多元统计
韩立 •
这个作者很懒,什么都没留下…
展开
-
多元统计学初级概念
重点总结: 随机样本是从数据角度出发。而随机变量是从理想模型角度出发。实际应用中都是用数据样本构建均值方差等量,然后用参数估计的方法 倒推出其理想模型,然后用模型去检验实际数据。这是统计学实际应用的方法思想。协方差含义:刻画了两个变量 X Y的相关性(或者说是多元数据中两个特征量的相关性)相关系数在协方差基础上进一步严格定义了两个特征变量的关系 如下。:回顾概率论与数理统计的内容。原创 2022-09-20 03:19:43 · 212 阅读 · 0 评论 -
LDA线性判别分析Python
线性判别分析(Linear Discriminant Analysis,简称LDA)是一种经典的监督学习的数据降维方法,也叫做Fisher线性判别(Fisher Linear Discriminant,FLD),是模式识别的经典算法 ,它是在1996年由Belhumeur引入模式识别和人工智能领域的。LDA的主要思想是将一个高维空间中的数据投影到一个较低维的空间中,且投影后要保证各个类别的类内方差小而类间均值差别大,这意味着同一类的高维数据投影到低维空间后相同类别的聚在一起,而不同类别之间相距较远。原创 2022-09-20 03:18:44 · 357 阅读 · 0 评论 -
协方差矩阵用途
协方差两个用途: 各有缺陷 第二个用途:马氏距离(曼哈顿距离) 例如 欧式距离定义 马氏距离: 马氏距离意义: 案例:鸢尾花案例 随机向量的变换 实际案例: 随机变量的线性组合......原创 2022-07-05 09:35:52 · 435 阅读 · 0 评论 -
LDA判别分析和PCA主成分分析之数据降维
原理: 线性判别分析(Linear Discriminant Analysis,简称LDA)是一种经典的监督学习的数据降维方法,也叫做Fisher线性判别(Fisher Linear Discriminant,FLD),是模式识别的经典算法 ,它是在1996年由Belhumeur引入模式识别和人工智能领域的。LDA的主要思想是将一个高维空间中的数据投影到一个较低维的空间中,且投影后要保证各个类别的类内方差小而类间均值差别大,这意味着同一类的高维数据投影到低维空间后相同类别的聚在一起,而不同类别之间相原创 2022-07-12 14:27:28 · 961 阅读 · 0 评论 -
多元正态的估计和如何评价
对多元正态的估计采用极大似然估计方法估计其参数:结论 一元正态分布的性质:即为如何评估(重点) 直方图 QQ图 统计检验方法: 检验多元正态原创 2022-07-09 11:06:45 · 112 阅读 · 0 评论 -
多元统计之箱线图学习
箱线图目的:排出异常值 重点 代码:参考工业蒸汽预测代码箱线图原创 2022-07-09 09:22:43 · 143 阅读 · 0 评论 -
多元正态分布学习
一元正态分布复习 多元正态分布学习公式公式针对多维向量的即多维特征变量 均值向量和协方差矩阵前面已经学习 二元正态分布密度等高线的概念 每个等高线都是椭圆 多元正态分布的性质 注:多变量变成一变量(线性组合)...原创 2022-07-07 10:03:09 · 212 阅读 · 0 评论