Java集合(3):小白也能看懂的HashMap图解、底层原理与Hash算法

前面分析了Java集合中ArrayList和LinkedList的源码,这次说一下另一个常用的集合:HashMap。

一 、HashMap的特点

(1)属于Map下的集合,用KV键值对存储元素,元素是无序的,key不允许重复,value允许重复,允许存储null。
(2)底层数据结构是哈希表,实现是链表+数组,JDK 8 后又加了红黑树。
(3)多线程环境下不安全,解决方法:

  • 使用Hashtable;
  • 调用Collections类的synchronizedMap方法;
  • 使用juc包下的ConcurrentHashMap类代替(此方法效率最高)。

二、初识底层结构

特点中提到,HashMap底层结构为数组+链表+红黑树,先看一下大体的结构图:
在这里插入图片描述
简单的说,当一个数据要添加到HashMap中时,首先根据key找到数组的位置,如果数组已经有数据了则与前面的数据形成链表,如果链表过长则形成红黑树。
那么这个数组到底多大?链表多长时会形成红黑树?这一系列问题,我们可以在HashMap的属性中找到答案。

三、属性

HashMap中定义了六个常量,用来控制它的底层结构。
(1)static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
默认初始容容量等于16,也就是数组(也习惯称为为桶)的大小为16,这里既然有默认容量,也就是说数组的大小是可以改变的。此外,数组的容量必须是2的幂,至于原因会在后面解释。
(2)static final int MAXIMUM_CAPACITY = 1 << 30;
最大容量,也是说的数组长度(桶的个数)。为什么是1 << 30?因为int类型的数据能存下最大的2的幂就是2的30次方。
(3)static final float DEFAULT_LOAD_FACTOR = 0.75f;
默认的负载系数。前面说到数组的大小是会变化的,那么什么时候数组会变化呢?数组中已经存储的容量占总容量的负载系数倍,数组就会扩容。例如默认初始容量是16,默认负载系数为0.75,则当数组中存储元素超过16*0.75=12时,数组就会扩容。
(4)static final int TREEIFY_THRESHOLD = 8;
树形化的阈值为8。当一个链表上存储元素的个数多于8时链表就会开始转换为红黑树存储。
(5)static final int UNTREEIFY_THRESHOLD = 6;
取消树形化的阈值为6。当一个红黑树中的元素少于6时,红黑树就会转化为链表。
(6)static final int MIN_TREEIFY_CAPACITY = 64;
最小树形化阈值为64。这个参数的意思就是说,如果桶的个数小于64,那么即使链表长度大于8,也不会化为红黑树,而是会先采取扩容。

四、底层结构详解

看完了HashMap的各个属性,我们就可以明确HashMap底层结构的变化了:
1.如果构造方法采用默认的构造方法,会创建一个容量为16的数组。添加数据会在数组中添加,如果数组中有数,则在后面形成链表。
在这里插入图片描述

2.继续添加数据,有两种情况会导致数组扩容

a.HashMap中存储元素的个数大于阈值(数组容量*负载系数
在这里插入图片描述

b.如果数组其中一个格子的链表长度大于8
在这里插入图片描述

数组的扩容是按照扩容两倍的规则扩容的,扩容完后已有的数据会重新计算在HashMap中的位置。
3.扩容后的数组,如果容量大于64,继续添加数据,如果HashMap中存储元素的数量大于阈值(数组容量*负载系数)会继续扩容,但是如果链表长度大于8,链表转变为红黑树。
在这里插入图片描述
如果因为删除数据或扩容导致红黑树的元素小于6,红黑树会变回链表。关于添加数据、扩容等源码会在后面的文章详细介绍。

五、定位算法

看到这里,可能会疑惑,数据是如何选择要存到数组的哪个位置的?比较容易想到的是计算出数据key的hash值,与数组的容量进行取模(%)运算,然后得出位置。

其实HashMap也是这么做的,但是由于计算机的模运算消耗较大,HashMap采用了位与运算(&)来代替,用的是以下公式:hash % N = hash & N-1 。比如在HashMap中添加元素的方法中有段代码为:

 if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);

其中tab[]就是数组,i = (n - 1) & hash就是计算出的位置。

此外,在JDK1.8中还优化了hash算法,当数组容量太小时(例如16),参与位与运算(&)的hash值的高位并不会参加运算,决定存储位置只会取决于hash值的低四位,大大增大了hash冲突(多个数据进行计算存储的位置相同)的概率。优化的hash算法如下:

static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

看代码可知是将hash值右移16位并进行异或(^)计算,这样高位也能参与后面的计算了。

综上,定位算法的计算过程如下:

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值