用0/1背包问题求解。

通过一个具体的例子,介绍了如何使用0/1背包问题解决物品选择问题。在这个例子中,有5个物品,每个物品有重量和价值,背包容量为6。目的是在不超过背包容量的情况下,选取价值最大的物品组合。
摘要由CSDN通过智能技术生成

有5个物品,其重量分别为(3, 2, 1, 4,5),价值分别为(25, 20, 15, 40, 50),背包容量为6 \n即W[5]={3, 2, 1, 4,5}; v[5]={25, 20, 15, 40, 50},用0/1背包问题求解。

#include<stdio.h>
#include<stdlib.h>

int V[10][10];
int x[10];

int max(int h,int l){
   
	if(h>=l)
		return h;
	else
		return l;
}
int KnapSack(int W[],int v[],int n,int C){
   
	int i,j;
	printf("首先初始化第 0 列 和 第 0 行 : \n");
	for(i=0;i<=n;i++)
		V[i][0]=0; 
	
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值