定义
假设节流膨胀在 d p dp dp的压差下进行,温度变化为 d T dT dT,定义焦耳-汤姆逊系数
μ J − T = ( ∂ T ∂ p ) H {\mu _{J - T}}{\rm{ = }}{\left( {\frac{
{\partial T}}{
{\partial p}}} \right)_H} μJ−T=(∂p∂T)H
下标 H H H表示恒焓过程。该系数表示经节流膨胀气体的温度随压力的变化率。
引理
如 u u u和 v v v是 x x x、 y y y的函数,雅可比行列式定义为
∂ ( u , v ) ∂ ( x , y ) = ∣ ∂ u ∂ x ∂ u ∂ y ∂ v ∂ x ∂ v ∂ y ∣ = ∂ u ∂ x ⋅ ∂ v ∂ y − ∂ u ∂ y ⋅ ∂ v ∂ x \frac{
{\partial \left( {u,v} \right)}}{
{\partial \left( {x,y} \right)}}= \begin{vmatrix} {\frac{
{\partial u}}{
{\partial x}}} & {\frac{
{\partial u}}{
{\partial y}}}\\ {\frac{
{\partial v}}{
{\partial x}}} & {\frac{
{\partial v}}{
{\partial y}}} \end{vmatrix} = \frac{
{\partial u}}{
{\partial x}}\cdot{\frac{
{\partial v}}{
{\partial y}}} - \frac{
{\partial u}}{
{\partial y}}\cdot{\frac{
{\partial v}}{
{\partial x}}} ∂(x,y)∂(u,v)=∣∣∣∣∣∂x∂u∂x∂v∂y∂u∂y∂v∣∣∣∣∣=∂x∂u⋅∂y∂v−∂y∂u⋅∂x∂v
例题
例1
- 证明:
μ = 1 C p [ T ( ∂ V ∂ T ) p − V ] \mu {\rm{ = }}\frac{1}{ { {C_p}}}\left[ {T{ {\left( {\frac{ {\partial V}}{ {\partial T}}} \right)}_p} - V} \right] μ=Cp1[T(∂T∂V)p−V] - 利用
( ∂ U ∂ V ) T = T ( ∂ p ∂ T ) V − p {\left( {\frac{ {\partial U}}{ {\partial V}}} \right)_T} = T{\left( {\frac{ {\partial p}}{ {\partial T}}} \right)_V} - p (∂V∂U)T=T(∂T∂p)V−p
证明:
μ = 1 C p [ T ( ∂ V ∂ T ) p − V