几个焦耳-汤姆逊(Joule-Thomson)系数的证明题

本文详细介绍了焦耳-汤姆逊系数的定义,并通过引理和例题阐述了如何计算这一热力学参数。通过证明过程揭示了μ与气体状态变化的关系,特别是展示了μ与恒焓过程中的温度、压力变化的联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义

假设节流膨胀在 d p dp dp的压差下进行,温度变化为 d T dT dT,定义焦耳-汤姆逊系数
μ J − T = ( ∂ T ∂ p ) H {\mu _{J - T}}{\rm{ = }}{\left( {\frac{ {\partial T}}{ {\partial p}}} \right)_H} μJT=(pT)H
下标 H H H表示恒焓过程。该系数表示经节流膨胀气体的温度随压力的变化率。

引理

u u u v v v x x x y y y的函数,雅可比行列式定义为
∂ ( u , v ) ∂ ( x , y ) = ∣ ∂ u ∂ x ∂ u ∂ y ∂ v ∂ x ∂ v ∂ y ∣ = ∂ u ∂ x ⋅ ∂ v ∂ y − ∂ u ∂ y ⋅ ∂ v ∂ x \frac{ {\partial \left( {u,v} \right)}}{ {\partial \left( {x,y} \right)}}= \begin{vmatrix} {\frac{ {\partial u}}{ {\partial x}}} & {\frac{ {\partial u}}{ {\partial y}}}\\ {\frac{ {\partial v}}{ {\partial x}}} & {\frac{ {\partial v}}{ {\partial y}}} \end{vmatrix} = \frac{ {\partial u}}{ {\partial x}}\cdot{\frac{ {\partial v}}{ {\partial y}}} - \frac{ {\partial u}}{ {\partial y}}\cdot{\frac{ {\partial v}}{ {\partial x}}} (x,y)(u,v)=xuxvyuyv=xuyvyuxv

例题

例1

  1. 证明:
    μ = 1 C p [ T ( ∂ V ∂ T ) p − V ] \mu {\rm{ = }}\frac{1}{ { {C_p}}}\left[ {T{ {\left( {\frac{ {\partial V}}{ {\partial T}}} \right)}_p} - V} \right] μ=Cp1[T(TV)pV]
  2. 利用
    ( ∂ U ∂ V ) T = T ( ∂ p ∂ T ) V − p {\left( {\frac{ {\partial U}}{ {\partial V}}} \right)_T} = T{\left( {\frac{ {\partial p}}{ {\partial T}}} \right)_V} - p (VU)T=T(Tp)Vp
    证明:
    μ = 1 C p [ T ( ∂ V ∂ T ) p − V
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值