DAY30 贪心算法part02
1. 122. 买卖股票的最佳时机 II
给你一个整数数组 prices
,其中 prices[i]
表示某支股票第 i
天的价格。
在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。
返回 你能获得的 最大 利润 。
示例 1:
输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3。
最大总利润为 4 + 3 = 7 。
示例 2:
输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。
最大总利润为 4 。
代码实现
class Solution:
def maxProfit(self, prices: List[int]) -> int:
#俺认为这是一道栈的题目,每个遇到第一个大于它价格我们就卖,所以是找每一个第一大于它的值的数
#栈底到栈顶递减,大到底
stack = []
profit = 0
for i in range(len(prices)):
cur_cnt = 1
while stack and stack[-1] < prices[i]:
last_price = stack.pop()
if cur_cnt == 1:
profit += (prices[i] - last_price)
cur_cnt += 1
stack.append(prices[i])
return profit
2. 55. 跳跃游戏
给你一个非负整数数组 nums
,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个下标,如果可以,返回 true
;否则,返回 false
。
示例 1:
输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。
示例 2:
输入:nums = [3,2,1,0,4]
输出:false
解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。
代码实现
class Solution:
def canJump(self, nums: List[int]) -> bool:
# 格子数表示可以跳跃的最大长度,,也就是说依次遍历每个格子,只有倒数第二个元素的格子时最远的距离能够cover
# 住最后一个格子就行了
if len(nums) == 1:
return True
max_dis = 0
target = len(nums) - 1
i = 0
while i <= max_dis:
# print(f"i {i} max_dis {max_dis}")
num = nums[i]
max_dis = max(i + num, max_dis)
i += 1
if max_dis >= target:
return True
return False
3. 45. 跳跃游戏 II
给定一个长度为 n
的 0 索引整数数组 nums
。初始位置为 nums[0]
。
每个元素 nums[i]
表示从索引 i
向前跳转的最大长度。换句话说,如果你在 nums[i]
处,你可以跳转到任意 nums[i + j]
处:
0 <= j <= nums[i]
i + j < n
返回到达 nums[n - 1]
的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]
。
代码实现
class Solution:
def jump(self, nums: List[int]) -> int:
if len(nums) == 1:
return 0
res_cnt = 0
i = 0
cur_max_index = 0
new_max_index = 0
while i <= cur_max_index:
new_max_index = max(new_max_index, nums[i] + i)
i += 1
if i > cur_max_index:
cur_max_index = new_max_index
res_cnt += 1
if cur_max_index >= len(nums) - 1:
return res_cnt
实现二
class Solution:
def jump(self, nums: List[int]) -> int:
ans = 0
start = 0
end = 1
while end < len(nums):
max_dis = 0
for i in range(start, end):
max_dis = max(max_dis, nums[i] + i)
start = end
end = max_dis + 1
ans += 1
if end >= len(nums):
return ans
return ans
4. 1005. K 次取反后最大化的数组和
给你一个整数数组 nums
和一个整数 k
,按以下方法修改该数组:
- 选择某个下标
i
并将nums[i]
替换为-nums[i]
。
重复这个过程恰好 k
次。可以多次选择同一个下标 i
。
以这种方式修改数组后,返回数组 可能的最大和 。
示例 1:
输入:nums = [4,2,3], k = 1
输出:5
解释:选择下标 1 ,nums 变为 [4,-2,3] 。
示例 2:
输入:nums = [3,-1,0,2], k = 3
输出:6
解释:选择下标 (1, 2, 2) ,nums 变为 [3,1,0,2] 。
代码实现
class Solution:
def largestSumAfterKNegations(self, nums: List[int], k: int) -> int:
#绝对值排序 + 负数取反 + 剩余最小数取反
nums = sorted(nums, key=abs, reverse=True)
for i, num in enumerate(nums):
if num < 0 and k > 0:
k -= 1
nums[i] = -num
if k <= 0:
break
if k % 2 == 1: nums[-1] *= -1
return sum(nums)