求职刷题力扣DAY30---贪心算法part02

DAY30 贪心算法part02

1. 122. 买卖股票的最佳时机 II

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润

示例 1:

输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3。
最大总利润为 4 + 3 = 7 。

示例 2:

输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。
最大总利润为 4 。
代码实现
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        #俺认为这是一道栈的题目,每个遇到第一个大于它价格我们就卖,所以是找每一个第一大于它的值的数
        #栈底到栈顶递减,大到底
        stack = []
        profit = 0
        for i in range(len(prices)):
            cur_cnt = 1
            while stack and stack[-1] < prices[i]:
                last_price = stack.pop()
                if cur_cnt == 1:
                    profit += (prices[i] - last_price)
                cur_cnt += 1
            stack.append(prices[i])
        return profit

2. 55. 跳跃游戏

给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false

示例 1:

输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。

示例 2:

输入:nums = [3,2,1,0,4]
输出:false
解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。
代码实现
class Solution:
    def canJump(self, nums: List[int]) -> bool:
        # 格子数表示可以跳跃的最大长度,,也就是说依次遍历每个格子,只有倒数第二个元素的格子时最远的距离能够cover
        # 住最后一个格子就行了
        if len(nums) == 1:
            return True
        max_dis = 0
        target = len(nums) - 1
        i = 0
        while i <= max_dis: 
            # print(f"i {i} max_dis {max_dis}")
            num = nums[i]
            max_dis = max(i + num, max_dis)
            i += 1
            if max_dis >= target:
                return True
        return False

3. 45. 跳跃游戏 II

给定一个长度为 n0 索引整数数组 nums。初始位置为 nums[0]

每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:

  • 0 <= j <= nums[i]
  • i + j < n

返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]

代码实现
class Solution:
    def jump(self, nums: List[int]) -> int:
        if len(nums) == 1:
            return 0
        res_cnt = 0
        i = 0
        cur_max_index = 0
        new_max_index = 0
        while i <= cur_max_index:
            new_max_index = max(new_max_index, nums[i] + i) 
            i += 1
            if i > cur_max_index:
                cur_max_index = new_max_index
                res_cnt += 1
                if cur_max_index >= len(nums) - 1:
                    return res_cnt
       
实现二
class Solution:
    def jump(self, nums: List[int]) -> int:
        ans = 0
        start = 0
        end = 1
        while end < len(nums):
            max_dis = 0
            for i in range(start, end):
                max_dis = max(max_dis, nums[i] + i)
            start = end 
            end = max_dis + 1
            ans += 1
            if end >= len(nums):
                return ans
        return ans
                

4. 1005. K 次取反后最大化的数组和

给你一个整数数组 nums 和一个整数 k ,按以下方法修改该数组:

  • 选择某个下标 i 并将 nums[i] 替换为 -nums[i]

重复这个过程恰好 k 次。可以多次选择同一个下标 i

以这种方式修改数组后,返回数组 可能的最大和

示例 1:

输入:nums = [4,2,3], k = 1
输出:5
解释:选择下标 1 ,nums 变为 [4,-2,3] 。

示例 2:

输入:nums = [3,-1,0,2], k = 3
输出:6
解释:选择下标 (1, 2, 2) ,nums 变为 [3,1,0,2] 。
代码实现
class Solution:
    def largestSumAfterKNegations(self, nums: List[int], k: int) -> int:
        #绝对值排序 + 负数取反 + 剩余最小数取反
        nums = sorted(nums, key=abs, reverse=True)
        for i, num in enumerate(nums):
            if num < 0 and k > 0:
                k -= 1
                nums[i] = -num
            if k <= 0:
                break
        if k % 2 == 1: nums[-1] *= -1
        return sum(nums)

        
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云墨丹青

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值