问题F:很

题目描述
对于一个 n 个点,n(n−1)/2条有向边,边权均为 1 的竞赛图「即对于任意两个不同的点,恰有一条有向边连接它们」,定义 disi,j为:从点 i 走到点 j 最短路径的长度。「特别地,如果不存在这样的路径,设它为 ∞

定义点 i 的粉兔值 Ri为:max(disi,j),1≤j≤n。

定义一个竞赛图的巨佬值为:min(Ri),1≤i≤n。

现在对于每一种不同的竞赛图,求他们巨佬值的和。结果请对 19260817 取模。可以证明,不存在一个竞赛图的巨佬值为 ∞。

「两个竞赛图不同,当且仅当存在点 i,j,在其中一个图中有边 i→j,而另一个图中有边 j→i」
输入
一行一个正整数n(2≤n≤109)。
输出
一行一个整数,含义如题。
样例输入 Copy
3
样例输出 Copy
10

盲猜,如果每个点都存在环,那么巨佬值就为2(可以尝试假设逆推,因为每两个点
之间都有边,所以,比较容易得出结论,推导过程我讲不太出来,嘻嘻嘻~)
如果有一个点没有环,那么,就有两种情况,
第一种,其他所有点到他都有边,那么,直接忽略这个点就可,
第二种,他到其他所有点都有边,那么,巨佬值为1
所以,假设所有点巨佬值都为2,减去巨佬值为1的点的个数,就是答案。
ans=2^((n-1)*n/2+1)-2^((n-1)*n/2-(n-1))*n;
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e6+5;
typedef  long long ll;
const ll mod=19260817;
ll ksm(ll d,ll n)
{
    ll ans=1;
    while(n)
    {
        if(n&1) ans=ans*d%mod;
        d=d*d%mod;
        n/=2;
    }
    return ans;
}
int main()
{
    ll n;
    scanf("%lld",&n);
    if(n==2)
    {
        puts("2");
        return 0;
    }
    ll d=n*(n-1)/2;
    ll ans=ksm((ll)2,d+1);
     
    ans-=ksm((ll)2,d-n+1)*n%mod;
    ans+=mod;
    printf("%lld\n",ans%mod);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值