分而治之:最大子数组问题

本文详细介绍了如何使用分而治之的方法解决最大子数组问题。通过将数组分为两部分,递归求解子问题,然后合并得到最大子数组之和。重点在于S3部分,即跨中点的最大子数组的求解,通过遍历计算左部分和右部分的最大子数组和,最后得到整体的最大和。算法分析图和代码也一同提供了深入理解的辅助。
摘要由CSDN通过智能技术生成

分而治之:最大子数组问题

问题:
给出一个数组,找到一个子数组(连续的),使得该子数组的元素和是最大的。
输入:
给定一个数组X[1…n],对于任意一对数组下标为l,r(l≤r)的非空子数组,其和记为S(l,s).
输出:
求出S(l,s)的最最值,记为Smax .

问题分析

在这里插入图片描述

  1. 将数组X[1…n]分为X[1…n/2]和X[n/2 +1…n]
  2. 递归求解子问题
    S1∶数组X[1…n/2]的最大子数组
    S2∶数组X[n/2+1…n]的最大子数组
  3. 合并子问题,得到Smax
    S3∶跨中点的最大子数组
    数组X的最太子数组之和Smax =max{S1,sz,s3}

执行效率的瓶颈值在合并方面,也就是S3的求解问题。

S3的求解:
在这里插入图片描述

  1. 记mid = n/2

  2. S3可分为左右两部分
    Left:以X[mid]为结尾的最大子数组之和
    Right:以X[mid+1]为开头的最大子数组之和
    S3 = Left + Right

    Left的求解:
    从X[mid]向前遍历求和,并记录最大值
    在这里插入图片描述
    Right的求解:
    从X[mid +1]向后遍历求和,并记录最大值
    在这里插入图片描述

S3的时间复杂度:

  1. Left时间复杂度:O(mid)
  2. Right时间复杂度:O(n - mid)
  3. S3时间复杂度:O(n)

算法分析图

在这里插入图片描述

代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值