题目
两个骰子为同类的定义是:
将其中一个骰子通过若干次上下、左右或前后翻转后,其与另一个骰子对应的6面数字均相等。
输入描述:
第一行1个整数N,表示骰子的数量。
(1 <= N <= 1,000)
接下来N行,每行6个数字(1~6,且各不相同)
其中第i行表示第i个骰子当前上、下、左、右、前、后这6面的数字。
输出描述:
共2行:
第一行1个整数M,表示不同种类的骰子的个数
第二行M个整数,由大到小排序,表示每个种类的骰子的数量
例1:
输入例子1:
2
1 2 3 4 5 6
1 2 6 5 3 4
输出例子1:
1
2
例子说明1:
第二个骰子相当于是第一个骰子从左向右旋转了一面得到,属于同类。
例2:
输入例子2:
3
1 2 3 4 5 6
1 2 6 5 3 4
1 2 3 4 6 5
输出例子2:
2
2 1
例子说明2:
第三个骰子无法通过任何旋转变换成第一个或第二个骰子。
例3:
输入例子3:
10
2 5 1 3 4 6
5 4 3 2 1 6
1 4 6 2 3 5
1 5 6 3 4 2
6 4 2 1 5 3
3 6 4 5 2 1
1 6 3 4 2 5
5 1 4 2 6 3
6 2 3 1 5 4
5 3 6 1 4 2
输出例子3:
9
2 1 1 1 1 1 1 1 1
例子说明3:
只有第4个骰子(1 5 6 3 4 2)与第8个骰子(5 1 4 2 6 3)属于同一类。
一种可能的变换方式:
- 首先从右向左翻转1次
(1 5 6 3 4 2) -> (1 5 4 2 3 6) - 然后从上向下翻转2次
(1 5 4 2 3 6) -> (6 3 4 2 1 5) -> (5 1 4 2 6 3)
思路
先确定一面,比如先确定1所在的面。那1的对面的数字有5种可能:2,3,4,5,6。剩下1的周围的4面有几种可能呢?先把剩下的4个数字排列组合,即4! = 24,其中每4种是重复的,所以有24 / 4 = 6种。总共就是5*6 = 30种骰子。
可以根据上面的思路判断是否是同一类。先找到1所在的面,根据1的对面的数字判断是5大类当中的哪种,再根据1周围的一圈判断是6小类的哪种。
很容易可以找到1及其对面。下面是不同情况1周围的面的提取顺序:
上 | 下 | 左 | 右 | 前 | 后 |
---|---|---|---|---|---|
1 | 左 | 前 | 右 | 后 | |
1 | 左 | 后 | 右 | 前 | |
上 | 后 | 1 | 下 | 前 | |
上 | 前 | 1 | 下 | 后 | |
上 | 左 | 下 | 右 | 1 | |
上 | 右 | 下 | 左 | 1 |
要将周围四面提取到一个int数组ring(数组从0开始)中备用,有两种方法可以实现:
1.按顺序 从1及其对面的后面开始提取到ring中(到最后又循环到前面)。交换ring[1]与ring[2]。如果1的位置大于1对面的位置(即上表2,4,6行),就交换ring[1]与ring[3]。
2. 从头开始提取到ring中,如果是1或1对面则跳过。交换ring[1]与ring[2]。如果是上表2,3,6行情况,就交换ring[1]与ring[3]。
提取完后判断是不是同一个环就可以了(如3456与4563是一个环)。
总结:先判断1的对面,再判断1的周围一圈
c++代码
#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXTYPE = 30;
int type[30][5] = {
0}, typenum[