01背包问题
题目
有N件物品和一个容量为sum的背包。第iii件物品的费用是w[i],价值是v[i],求将哪些物品装入背包可使价值总和最大
基本思路
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[i][j]表示前i件物品恰放入一个容量为j的背包可以获得的最大价值。则其状态转移方程便是:
1.不选第i个物品f[i][j] = f[i - 1][j];
2.选第i 个物品 f[i−1][j−w[i]]+v[i]
F[0][0] = 0;
For(int i =1;i<=n;i++)
For(int j = 1;j<=sum;j++){
f[i][j] = f[i - 1][j];
If(j>=w[i])
f[i][j]=max(f[i−1][j],f[i−1][j−w[i]]+v[i])
}
Int res = 0;
For(int i =0;i<=m;i++){
Res = max(res,f[n][i])
}
解释:前i件产品中容量为j,转化为前i-1个中容量为j 和前i个最后一个一定选之间的大小比较
优化空间复杂度
用一维数组优化
Int f[n];
因为取消了前面的维度
f[i−1][j−w[i]]变为f[j-w[i]] 所以为了保证计算i的时候f[i-1]的状态不变所以从大到小排序(从小到大排序j-w[i]从小到大会先改变)
所以倒着来
f[sum+1] ={0};
For(int i =1;i<=n;i++)
For(int j = sum;j>=w[i];j--)
f[j]=max(f[j],f[j−w[i]]+v[i])