GCD(莫比乌斯反演(数论公式+结论+因子个数)

在这里插入图片描述
这道题是真的好题!!!!我也是头一次搞莫比乌斯反演,没想到那么有用,但是的确对于它的理解是很有难度的!!!
题的意思很简单就是求在[a,b]区间取出的x和[c,d]区间取出的y使得gcd(x,y)==k的对数(注意这里的x,y为无序的)并且题上说了把a=c=1;
当时我拿着这个题,一脸的懵逼,QAQ;
然后百度了一下说是莫比乌斯反演;那什么是莫比乌斯反演呢?
其实我感觉如果要去证明是很难看懂的;但是自己还是尽量去理解吧,嘻嘻;
其实莫比乌斯反演就是如果我能构造出一个公式:在这里插入图片描述
然后构造出另一个公式:
在这里插入图片描述
那么使得这两个构造的公式有这样的关系:在这里插入图片描述
那么我我就可以利用莫比乌斯反演来化简了;
但是怎么去构造呢?
就这个题而言我可以这样构造:
f(n)为gcd(x,y)==n的(x,y)的配对的个数;
F(n)为n|gcd(x,y)的(x,y)的配对的个数;
很显然,这道题就是求F(1)的(x,y)的配对的个数;
注意:上面的f(n)中的n和F(n)中的n不是同一个n;为了方便我写成:f(d)吧;
所以这样就可以知道能够整除n的(x,y)的对数肯定等于所有满足是n的倍数的(x,y)的配对个数的和;也就是n|d;如果对gcd很熟悉的可以很好理解;但是请注意这里算重了:为什么?比如在区间[1,2]选;那么按照上面的配对方式就有:

在这里插入图片描述
所以实际算出来的是左边这种,而我要想得到右边这种(因为题上说了(1,2)和(2,1)是认为相同的);所以去重就[1,min(b,d)]中,只有这里面才算的两次,这样就可以理解为什么需要去重了;如果题上不说(x,y)和(y,x)相同的话,就不用去重了;
在这里需要知道这个结论:其实如果学过容斥定理(算集合整除的应该容易理解):
就是gcd(x,y)==n的配对个等于(x/n)*(y/n);为什么呢?可以这样理解:比如gcd(4,2)2;那么配对个数就为2乘12;因为这里要用到高中的独立事件;因为[1,4]只有2,4两种情况,[1,2]中只有2一种情况,所以总得情况就是2种配对;
所以这个理解之后再来看莫比乌斯反演公式:
在这里插入图片描述
根据我前面定义的函数,直接带进来就可以了;然后令n=1就可以得到:
在这里插入图片描述
那么d的范围是多少呢?根据上面的函数定义我可以知道d的范围就是[1,min(b,d)];就这样咯;嘻嘻;
然后求u[d]的模板一带+容斥定理理解就AC了;
其实这道题考的东西挺多的;不光是莫比乌斯反演,还考察了gcd及[1,n]中能被n整除的个数常用的数论结论;我还是挺开心的,头一次搞明白莫比乌斯反演,虽然复杂,但是自己想想还是能理解的;

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=100000;
int pri[N+5],mu[N+5],num;
bool ss[N+5];
void get_mu()//得到u系数的模板直接存在mu数组中从下标1开始 
{
    mu[1]=1;
    for (int i=2;i<=N;i++)
    {
        if (!ss[i]) 
        {
            pri[++num]=i;
            mu[i]=-1;
        }
        for (int j=1;pri[j]*i<=N && j<=num;j++)
        {
            ss[pri[j]*i]=1;
            if (i%pri[j]==0)
            {
                mu[pri[j]*i]=0;break;
            }
            mu[pri[j]*i]=-mu[i];
        }
    }
}
int main(){
	int T,g=0;
	get_mu();
	scanf("%d",&T);
	while(T--){
		 int a,b,c,d,k;
		 scanf("%d %d %d %d %d",&a,&b,&c,&d,&k);
		 printf("Case %d: ",++g);
		 if(k==0)puts("0");//因为题目说了a,c都是>=1的,所以如果k为0;那么根本不会存在(x,y) 
		 else{
		 	int up=min(b,d);//因为这里只需要枚举到最小的就OK了 
		 	b/=k;d/=k;//因为gcd(x,y)==k可以转化为gcd(x/k,y/k)==1,所以这里可以缩小范围 
		 	ll ans1=0;
		 	ll ans2=0;
		 	if(b>d)swap(b,d);//因为我只用小的一个 
		 //	cout<<b<<"  "<<d<<endl;
		 	for(int i=1;i<=up;i++){
		 		   ans1+=1ll*mu[i]*(b/i)*(d/i);
		 		   ans2+=1ll*mu[i]*(b/i)*(b/i);//容斥定理+数论算因子个数 
			 }
			 printf("%lld\n",ans1-ans2/2);
		 }
		 
	}
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值