专栏:PAT乙级刷题笔记
题目
英国天文学家爱丁顿很喜欢骑车。据说他为了炫耀自己的骑车功力,还定义了一个“爱丁顿数” E E E ,即满足有 E E E 天骑车超过 E E E 英里的最大整数 E E E。据说爱丁顿自己的 E E E 等于87。
现给定某人 N N N 天的骑车距离,请你算出对应的爱丁顿数 E ( ≤ N ) E(≤N) E(≤N)
输入格式
输入第一行给出正整数 N ( ≤ 1 0 5 ) N (\leq 10^5) N(≤105)。即连续骑车的天数;第二行给出 N N N 个非负整数,代表每天的骑车距离。
输出格式
在一行中给出 N N N 天的爱丁顿数。
输入样例
10
6 7 6 9 3 10 8 2 7 8
输出样例
6
分析
首先肯定是要排序的,要不就没法做下去了。
排完序之后就简单了,假设有如下升序序列:
a
0
,
a
1
,
a
2
,
.
.
.
,
a
N
−
1
a_0,a_1,a_2,...,a_N-1
a0,a1,a2,...,aN−1开始遍历
令
E
=
i
E=i
E=i表示有
i
i
i天骑行超过
i
i
i里,显然当
a
N
−
E
a_{N-E}
aN−E第一次大于
E
E
E时,
E
E
E最大。
有一个小问题,一开始用的是选择排序,有一个测试点超时了。目测所有 O ( n 2 ) O(n^2) O(n2)算法都会超时。偷懒使用了库函数qsort(),是快速排序,过了。
代码
#include<iostream>
#include<stdlib.h>
using namespace std;
int cmp(const void *a, const void *b){
return ( *(int*)a - *(int*)b );
}
int main(){
int N,a[99999],min,E;
cin>>N;
for(int i = 0;i < N;++i){
cin>>a[i];
}
qsort(a,N,sizeof(int),cmp);
for(E = N;E > 0;--E){
if(a[N-E] > E)
break;
}
cout<<E;
}