时间复杂度2

【例 2】求两个n阶矩阵的的乘积算法

#include<iostream>
using namespace std;
int main()
{
 for(k=1;k<=n;k++)//执行n+1次
  {
   x++;//执行n次
  }
 for(i=1;i<=n;i++)//执行n+1次
  {
   for(j=1;j<=n;j++)//执行n*(n+1)次
    {
      y++;//执行n*n次
    }
  }
  return 0;
 } 

所以他的频度为 f ( n ) = O ( n 2 ) f(n)=O(n^2) f(n)=O(n2)所以该算法的时间复杂度为 T ( n ) = O ( n 2 ) T(n)=O(n^2) T(n)=O(n2)
【例 3】立方阶示例

#include<iostream>
using namespace std;
int main()
{
 int x=1;
 for(i=1;i<=n;i++)
  for(j=1;j<=i;j++)
   for(k=1;k<=j;k++)
    x++;
 return 0;
}

Tips:
1.先确定频度最高的语句
2. 然后计算
∑ 1 N ∑ j i ∑ k j \sum_1^N\sum_j^i\sum_k^j 1Njikj 1= ∑ 1 N ∑ j i \sum_1^N\sum_j^i 1Nji j = ∑ i n \sum_i^n in i*(i+1)/2=

for(i=1;i<=n;i=i*2)
 { x++;s=0;} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值