人工智能
土地公公爷
这个作者很懒,什么都没留下…
展开
-
什么叫训练模型?
根据上面的计算过程可知,下图的神经网络模型果然比较符合现实情况。带游泳池的首先大概率属于高档房,其次价格也比较高。不带游泳池的 属于低档房,而且价格较低。 为什么同样的模型,判断出的结果不一样呢? 1)w3比较大,为0.8,w4比较小,为0.001.意思就是贵的设施对于判断是否为高档很重要。马克-to-win @ 马克java社区:对于低档几乎没用。所以找好的模型的过程,就是找到他们合适的参数, ...转载 2019-09-04 14:34:09 · 4357 阅读 · 0 评论 -
为什么要引入激活函数?
根据上面的学习,我们已经知道,当我们接到客户的需求,让我们做识别,判断或者预测时,我们需要最终交付给客户我们的神经网络模型。其实我们千辛万苦训练出来的神经网络模型,就是从输入到输出的一个神秘未知函数映射。在大多数情况下,我们并不知道这个真正的函数是什么,我们只是尽量去拟合它。马克-to-win @ 马克java社区:前面给出的例子,只是起到引入和说明的作用,所以只用了一些线性组合(说明见下)。所以...转载 2019-09-05 15:19:09 · 903 阅读 · 0 评论 -
什么是sigmoid激活函数?
上面我们讲了引入激活函数的意义,激活函数有多种,下面我们拿一种激活函数sigmoid来做示例,其他的类似。sigmoid函数表达式如下:它的函数曲线图是:看到上面的函数曲线图,可以看出是一个sigmoid函数的特点就是当输入值从负无穷变到正无穷时,输出值在0和1之间,。。。。。。。。。。。。。更多请见:http://www.mark-to-win.com/index.html?...转载 2019-09-05 17:06:42 · 1655 阅读 · 0 评论 -
什么是导数和切线?以及他们的关系?
(引自高等数学)设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数。 所以说:函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何...转载 2019-09-06 15:44:42 · 8040 阅读 · 0 评论