归并排序的延伸——分而治之。
题目链接:https://www.luogu.com.cn/problem/P1908
来自洛谷普及/提高-
题目描述:
猫猫 TOM 和小老鼠 JERRY 最近又较量上了,但是毕竟都是成年人,他们已经不喜欢再玩那种你追我赶的游戏,现在他们喜欢玩统计。
最近,TOM 老猫查阅到一个人类称之为“逆序对”的东西,这东西是这样定义的:对于给定的一段正整数序列,逆序对就是序列中 ai>aj 且 i<j 的有序对。知道这概念后,他们就比赛谁先算出给定的一段正整数序列中逆序对的数目。
Update:数据已加强。
输入格式
第一行,一个数 n,表示序列中有 n个数。
第二行 n 个数,表示给定的序列。序列中每个数字不超过 10^9
输出格式
输出序列中逆序对的数目。
输入 输出
6 11
5 4 2 6 3 1
反复分析:
逆序对 是我在线性代数见到的名词。如果直接暴力统计,看看数据量呵呵算了吧省点力气,必须采用更高级的算法或数据结构。
假设现在有这样一段序列 ,简化过程,前面的递归分化和归并省略,只保留最后一次归并
第一次拿出来3和1比较因为右边擂台比较失败,所以左边的所有数都大于这个1,于是加入最终答案的计数。
这一过程就是归并排序在此题中的应用。至于前面的递归过程操作简便这里不再论述。
开始实现
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn=5e5+20;
int a[maxn], r[maxn];
ll n, ans=0;
//归并排序
void solve(int s, int e){
//分
if(s==e) return ;
int mid=(s+e)/2;
solve(s, mid), solve(mid+1, e);
//治
int i=s, j=mid+1, k=s;
//比较放入
while(i<=mid && j<=e){
if(a[i]<=a[j]) r[k++]=a[i++];
else r[k++]=a[j++], ans+=(ll)mid-i+1;
}
//剩余全部放入
while(i<=mid) r[k++]=a[i++];
while(j<=e) r[k++]=a[j++];
//再逐个放回数组 a中分治区排序完成
for(int i=s; i<=e; i++) a[i]=r[i];
}
int main()
{
cin>>n;
for(int i=0; i<n; i++) cin>>a[i];
solve(0, n-1);
cout<<ans<<endl;
return 0;
}
总结
多次TLE和WA之后在题解里看到的方法,没想到能用归并排序的思想解决,妙啊!学到了学到了。