普通卷积和动态卷积

1、普通卷积和动态卷积的区别

普通卷积

在普通卷积中,卷积核(或滤波器)是固定的,且在整个输入图像或特征图上共享。这意味着相同的卷积核会应用到输入的所有区域,无论数据的具体内容如何。这种方式具有较少的参数(对于固定卷积核来说),计算效率较高。

动态卷积

动态卷积的特点是卷积核在网络运行过程中是动态生成的,通常由输入数据的不同部分决定。这意味着不同的输入可能会使用不同的卷积核来进行处理,卷积核不再是固定的。动态卷积在某些任务(如多尺度处理、变换不变性处理等)中能提供更好的性能,但其计算开销较大,需要更多的参数和更高的计算资源。

2、举例

普通卷积

import torch
import torch.nn as nn

# 定义普通卷积模型
class StaticConvNet(nn.Module):
    def __init__(self):
        super(StaticConvNet, self).__init__()
        # 定义一个普通的卷积层
        self.conv = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1)
        
    def forward(self, x):
        return self.conv(x)

# 测试普通卷积
input_tensor = torch.randn(1, 3, 32, 32)  # 1个样本,3个通道,32x32的输入图像
model = StaticConvNet()
output = model(input_tensor)
print(output.shape)  # 输出形状

动态卷积

import torch
import torch.nn as nn
import torch.nn.functional as F
class Dynamic_conv2d(nn.Module):
    def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, K=4, ):
        super(Dynamic_conv2d, self).__init__()
        assert in_planes % groups == 0
        self.in_planes = in_planes
        self.out_planes = out_planes
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups
        self.bias = bias
        self.K = K
        self.attention = attention2d(in_planes, K, )

        self.weight = nn.Parameter(torch.Tensor(K, out_planes, in_planes // groups, kernel_size, kernel_size),
                                   requires_grad=True)
        if bias:
            self.bias = nn.Parameter(torch.Tensor(K, out_planes))
        else:
            self.bias = None

    def forward(self, x):  # 将batch视作维度变量,进行组卷积,因为组卷积的权重是不同的,动态卷积的权重也是不同的
        softmax_attention = self.attention(x)
        print(softmax_attention.size())
        batch_size, in_planes, height, width = x.size()
        x = x.view(1, -1, height, width)  # 变化成一个维度进行组卷积
        weight = self.weight.view(self.K, -1)
        print('weight',weight.size())

        # 动态卷积的权重的生成, 生成的是batch_size个卷积参数(每个参数不同)
        aggregate_weight = torch.mm(softmax_attention, weight).view(self.out_planes, -1, self.kernel_size,
                                                                    self.kernel_size)
        print(aggregate_weight.size())
        if self.bias is not None:
            aggregate_bias = torch.mm(softmax_attention, self.bias).view(-1)
            output = F.conv2d(x, weight=aggregate_weight, bias=aggregate_bias, stride=self.stride, padding=self.padding,
                              dilation=self.dilation, groups=self.groups * batch_size)
        else:
            output = F.conv2d(x, weight=aggregate_weight, bias=None, stride=self.stride, padding=self.padding,
                              dilation=self.dilation, groups=self.groups * batch_size)

        output = output.view(batch_size, self.out_planes, output.size(-2), output.size(-1))
        return output
class attention2d(nn.Module):
    def __init__(self, in_planes, K,):
        super(attention2d, self).__init__()
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.fc1 = nn.Conv2d(in_planes, K, 1,)
        self.fc2 = nn.Conv2d(K, K, 1,)
    def forward(self, x):
        x = self.avgpool(x)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x).view(x.size(0), -1)
        return F.softmax(x, 1)

# 测试动态卷积层
input_tensor = torch.randn(1, 3, 32, 32)  # 假设输入图像为1个样本,3个通道,32x32的尺寸
model = Dynamic_conv2d(in_planes=3, out_planes=16, kernel_size=3)
output = model(input_tensor)
print(output.shape)  # 输出的形状




从上面的代码中可以看到,静态卷积的卷积核与输入数据无关,而动态的卷积核与输入有关(aggregate_weight = torch.mm(softmax_attention, weight).view(self.out_planes, -1, self.kernel_size,self.kernel_size),其中softmax_attention与输入有关)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值