牛顿迭代法、二分查找法

给定一个 正整数 num ,编写一个函数,如果 num 是一个完全平方数,则返回 true ,否则返回 false 。
进阶:不要 使用任何内置的库函数,如 sqrt 。
示例 1:
输入:num = 16
输出:true
示例 2:
输入:num = 14
输出:false

最简单的方式是暴力求解,直接从1-num遍历这个就比较无脑了。
优化的解法就是二分查找和牛顿迭代法。

二分查找

思路:首先一个头指针一个尾指针,中间指针等于头和尾之和除以2,判断中间指针平方与num的关系。如果前者大,解就在前半部分,否者就在后半部分。等于就结束算法。

var isPerfectSquare = function(num) {
    // 使用二分法
    let low = 1
    let high = num
    let res = false
    while(low <= high){
        let mid = Math.floor((low + high) / 2)
        let temp = mid * mid
        if(temp > num){
            high = mid - 1
        }else if(temp < num ){
            low = mid + 1
        }else{
           res = true
           break
        }
    }
    return res
};

牛顿迭代法

在这里插入图片描述
首先求x^2 = num可以转换成一个函数y = x^2 - num,首先选取一点x0 ,过(x0,f(x0))点的切线的斜率为2x0,求得切线方程为 y - (x0^2 - num) = 2x0(x - x0),令y = 0,得出切线与x轴交点x1 = (x0^2 + num)/2x0。重复上述过程,直到先后两次求得的xn xn+1的差值小于10-6,就可以结束。

var isPerfectSquare = function(num) {
     // 使用牛顿迭代法
     let x0 = num
     while(1){
         let x1
         x1 = Math.floor((x0 * x0 + num) / (2 * x0))
         if(x0 - x1 <= 1e-6) break
         x0 = x1
     }
     return x0 * x0 === num
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程小飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值