给定一个 正整数 num ,编写一个函数,如果 num 是一个完全平方数,则返回 true ,否则返回 false 。
进阶:不要 使用任何内置的库函数,如 sqrt 。
示例 1:
输入:num = 16
输出:true
示例 2:
输入:num = 14
输出:false
最简单的方式是暴力求解,直接从1-num遍历这个就比较无脑了。
优化的解法就是二分查找和牛顿迭代法。
二分查找
思路:首先一个头指针一个尾指针,中间指针等于头和尾之和除以2,判断中间指针平方与num的关系。如果前者大,解就在前半部分,否者就在后半部分。等于就结束算法。
var isPerfectSquare = function(num) {
// 使用二分法
let low = 1
let high = num
let res = false
while(low <= high){
let mid = Math.floor((low + high) / 2)
let temp = mid * mid
if(temp > num){
high = mid - 1
}else if(temp < num ){
low = mid + 1
}else{
res = true
break
}
}
return res
};
牛顿迭代法
首先求x^2 = num可以转换成一个函数y = x^2 - num,首先选取一点x0 ,过(x0,f(x0))点的切线的斜率为2x0,求得切线方程为 y - (x0^2 - num) = 2x0(x - x0),令y = 0,得出切线与x轴交点x1 = (x0^2 + num)/2x0。重复上述过程,直到先后两次求得的xn xn+1的差值小于10-6,就可以结束。
var isPerfectSquare = function(num) {
// 使用牛顿迭代法
let x0 = num
while(1){
let x1
x1 = Math.floor((x0 * x0 + num) / (2 * x0))
if(x0 - x1 <= 1e-6) break
x0 = x1
}
return x0 * x0 === num
};