题意:
给定一个有向图。给所有的边染色,要求一个环中的边,不能全是一个颜色。问最少需要多少个颜色,才能满足条件,并输出每个边所染的颜色。
思路:
首先要明确的是,最少的颜色,不是1就是2。如果这个图里面无环的话,那么所有的边都染成一个颜色,就符合题意。有环的情况一定是2.,关键是怎么染的问题。
在一个环中,一定存在一个反向边(就是编号大的结点指向编号小的结点的边)。否则的话,编号最大的结点就没有入度。有了这个结论,就好办了。u<v的话,染成1,u>v的话,染成2。这就保证了,一个环中一定有1和2两种颜色 。
跑一下拓扑排序,如果无环的话就全输出1,否则就按第二种方式输出。
#include<cstdio>
#include<cstring>
#include<string>
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
using namespace std;
typedef long long ll;
const int maxn=5e3+10;
int ans[maxn],n,m,in[maxn];
vector<int> G[maxn];
bool topsort()
{
vector<int> v;
stack<int> S;
for(int i=1;i<=n;i++)
{
if(!in[i])
{
v.push_back(i);
S.push(i);
}
}
while(!S.empty())
{
int cur=S.top();S.pop();
for(int i=0;i<G[cur].size();i++)
{
int c=G[cur][i];
in[c]--;
if(!in[c])
{
S.push(c);
v.push_back(c);
}
}
}
if(v.size()==n) return true;
else return false;
}
int main()
{
scanf("%d%d",&n,&m);
int u,v;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
G[u].push_back(v);
in[v]++;
if(u<v) ans[i]=1;
else ans[i]=2;
}
if(topsort())
{
printf("%d\n",1);
for(int i=1;i<=m;i++)
printf("1 ");
printf("\n");
}
else
{
printf("%d\n",2);
for(int i=1;i<=m;i++)
printf("%d ",ans[i]);
printf("\n");
}
return 0;
}