Educational Codeforces Round 72 (Rated for Div. 2) D. Coloring Edges

题意:

给定一个有向图。给所有的边染色,要求一个环中的边,不能全是一个颜色。问最少需要多少个颜色,才能满足条件,并输出每个边所染的颜色。

思路:

首先要明确的是,最少的颜色,不是1就是2。如果这个图里面无环的话,那么所有的边都染成一个颜色,就符合题意。有环的情况一定是2.,关键是怎么染的问题。
在一个环中,一定存在一个反向边(就是编号大的结点指向编号小的结点的边)。否则的话,编号最大的结点就没有入度。有了这个结论,就好办了。u<v的话,染成1,u>v的话,染成2。这就保证了,一个环中一定有1和2两种颜色 。
跑一下拓扑排序,如果无环的话就全输出1,否则就按第二种方式输出。

#include<cstdio>
#include<cstring>
#include<string>
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
using namespace std;
typedef long long ll;
const int maxn=5e3+10;
int ans[maxn],n,m,in[maxn];
vector<int> G[maxn];
bool topsort()
{
   vector<int> v;
   stack<int> S;
   for(int i=1;i<=n;i++)
   {
       if(!in[i])
       {
           v.push_back(i);
           S.push(i);
       }
   }
   while(!S.empty())
   {
       int cur=S.top();S.pop();
       for(int i=0;i<G[cur].size();i++)
       {
           int c=G[cur][i];
           in[c]--;
           if(!in[c])
           {
               S.push(c);
               v.push_back(c);
           }
       }
   }
   if(v.size()==n) return true;
   else return false;
}
int main()
{
   scanf("%d%d",&n,&m);
   int u,v;
   for(int i=1;i<=m;i++)
   {
       scanf("%d%d",&u,&v);
       G[u].push_back(v);
       in[v]++;
       if(u<v) ans[i]=1;
       else ans[i]=2;
   }
   if(topsort())
   {
       printf("%d\n",1);
       for(int i=1;i<=m;i++)
           printf("1 ");
       printf("\n");
   }
   else
   {
       printf("%d\n",2);
       for(int i=1;i<=m;i++)
           printf("%d ",ans[i]);
       printf("\n");
   }
   return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值