当你有自变量和因变量,还知道相应方程公式,如何仅利用Excel画出拟合曲线并得出相应准确方程?
1. 准备:
首先打开Excel加载项中的“规划求解”(文件-选项-加载项-分析工具库-转到-勾选“规划求解加载项”-确定)
以本人数据为例,构建一个类似的表格(蓝色部分先不管,右下角部分X和Y先不管,MS为我的分类,也可以不管,a和b后随便输入一个数即可):
本表格中,第一列的[GSP]是所有已知的X,第二列的[ANPP]是所有已知的Y,在我的实验中本地ANPP与GSP应为指数相关关系,即Y=a*e^(bX),因此yi=下面的表格中应输入“=$H$2*EXP($H$3*A2)”,然后双击单元格右下角小十字应用到整列。如果你有别的方程记得修改为对应的方程;
相应的,下面的表格中应输入“=(A2-C2)^2”,然后应用到整列;此时ymean后的H4单元格中应输入“=AVERAGE(C2:C142)”,注意本公式中“142”仅为本人数据量,记得改成自己的;
相应的,[(y-ymean)2]下面的表格中应输入“=(A2-$H$4)^2”,然后应用到整列。
[残差平方和(SSE)]后应输入“=SUM(E2:E142)“,注意本公式中“142”仅为本人数据量,记得改成自己的;
[总离差平方和(SST)]后应输入”=SUM(E2:E142)“,注意本公式中“142”仅为本人数据量,记得改成自己的;
后应输入”=1-(H6/H7)“。
至此准备工作结束。
2. 求解:
合适的方程应使[残差平方和(SSE)]最小,因此我们使用规划求解(数据-分析-规划求解),将设置目标修改为”$H$6“,到最小值,通过更改可变单元格设置为a和b,即”$H$2:$H$3“,然后点击”求解“,即可得到相应[残差平方和(SSE)]最小的a和b的值。
点击求解后确定即可:
本示例中得到得到a和b如下:
因而我们可知该方程应为:y = 74.683e^(0.0036x)。
3. 绘图:
3.1. 绘制数据散点图
以此我们来构建图像,先“插入-散点图”:
把相应的X和Y对应选上:
至此,所有数据的散点图得到了。
3.2 绘制拟合曲线
然后再画拟合曲线,首先构建一列X和Y,由于Y是由X计算得来的,就先把X复制过来,然后在Y列输入相应公式计算出Y的值:
然后把这两列数据选中,点击“数据-筛选”,然后点X后面的箭头选“升序”,所有数据便按照升序排列了。此时便可以添加为拟合曲线:先点击图片,然后屏幕最上方选“图表工具-设计-选择数据-添加”,把X和Y相应添加上,然后右键点击图片中添加上的点,选择“设置数据点格式”,右边增加的框选择“线条-实线”:
标记选择“数据标记选项-无”:
我们便得到了该散点图的拟合曲线:
最后添加文本框,把方程、和P值打上即可。