这道题是一道贪心算法的经典问题(活动选择问题)
先说用到的贪心结论:最先结束的活动一定是最优解的一部分
证明过程如下:
假设a是所有活动中最先结束的活动,b是最优解中最先结束的活动
如果a=b 则结论成立
如果a!=b 则b的结束时间一定晚于a的结束时间,则此时用a替换掉最优解中的b,
a一定不与最优解中的其他活动时间重叠,因此替换掉后也是最优解
思路:在确定了贪心策略之后(上面的贪心结论)可以根据这个结论展开。
具体为 1.用结构体存储每个节目的开始时间和结束时间
2.根据每个节目的结束时间将这个结构体数组从小到大排序
3.如果当前节目的开始时间大于上一个节目的结束时间,则选入改节目
代码如下:
#include<string.h>
#include<algorithm>
using namespace std;
struct program{
int s;
int e;
}time[110];
int cmp(program a,program b){
return a.e<b.e;
}
int main(){
int n;
while(~scanf("%d",&n)&&n){
memset(time,0,sizeof(time));
int i;
for(i=0;i<n;i++){
scanf("%d%d",&time[i].s,&time[i].e);
}
sort(time,time+n,cmp);
int temp=time[0].e,count=1;
for(i=1;i<n;i++){
if(time[i].s>=temp){
count++;
temp=time[i].e;
}
}
printf("%d\n",count);
}
return 0;
}