假设你是一位很棒的家长,想要给你的孩子们一些小饼干。 但是,每个孩子最多只能给一块饼干。 对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸; 并且每块饼干 j,都有一个尺寸 s[j] 。 如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。 你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。 示例 1:
输入: g = [1,2,3], s = [1,1] 输出: 1 解释: 你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。 虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。 所以你应该输出1。
示例 2:
输入: g = [1,2], s = [1,2,3] 输出: 2 解释: 你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。 你拥有的饼干数量和尺寸都足以让所有孩子满足。 所以你应该输出2.
题解:排序 + 双指针 + 贪心 对于每个元素 g[i],找到未被使用的最小的 j 使得 g[i]≤s[j], 则 s[j] 可以满足 g[i]。 由于 g 和 s已经排好序,因此整个过程只需要对数组 g 和 s 各遍历一次。 当两个数组之一遍历结束时,说明所有的孩子都被分配到了饼干, 或者所有的饼干都已经被分配或被尝试分配(可能有些饼干无法分配给任何孩子) ,此时被分配到饼干的孩子数量即为可以满足的最多数量。
public class Solution7 {
public int findContentChildren(int[] g, int[] s) {
int result = 0;
Arrays.sort(g);
Arrays.sort(s);
int m = g.length,n = s.length;
for(int i=0,j=0;i<m && j<n;i++,j++){
// g 是小孩胃口 s是饼干
// 拿小孩胃口 和 饼干尺寸比
// 如果第i个小孩胃口 大于第j个饼干尺寸,就和下一个饼干比较
// 只到能满足小孩胃口 即g[i]<=s[j]
while (j<n && g[i]>s[j]){
j++;
}
if(j<n){
result++;
}
}
return result;
}
}