最长和谐子序列

和谐数组是指一个数组里元素的最大值和最小值之间的差别 正好是 1 。

现在,给你一个整数数组 nums ,请你在所有可能的子序列中找到最长的和谐子序列的长度。

数组的子序列是一个由数组派生出来的序列,它可以通过删除一些元素或不删除元素、且不改变其余元素的顺序而得到。

示例 1:

输入:nums = [1,3,2,2,5,2,3,7]
输出:5
解释:最长的和谐子序列是 [3,2,2,2,3]

示例 2:

输入:nums = [1,2,3,4]
输出:2

示例 3:

输入:nums = [1,1,1,1]
输出:0
方法一:枚举

思路与算法

我们可以枚举数组中的每一个元素,对于当前枚举的元素 x,它可以和 x+1组成和谐子序列。我们只需要在数组中找出等于 x 或 x+1的元素个数,就可以得到以 x 为最小值的和谐子序列的长度。

实际处理时,我们可以将数组按照从小到大进行排序,我们只需要依次找到相邻两个连续相同元素的子序列,检查该这两个子序列的元素的之差是否为 1。
利用类似与滑动窗口的做法,begin 指向第一个连续相同元素的子序列的第一个元素,end 指向相邻的第二个连续相同元素的子序列的末尾元素,如果满足二者的元素之差为 1,则当前的和谐子序列的长度即为两个子序列的长度之和,等于 end−begin+1。

class Solution {
    public int findLHS(int[] nums) {
        Arrays.sort(nums);
        int begin = 0;
        int res = 0;
        for (int end = 0; end < nums.length; end++) {
            while (nums[end] - nums[begin] > 1) {
                begin++;
            }
            if (nums[end] - nums[begin] == 1) {
                res = Math.max(res, end - begin + 1);
            }
        }
        return res;
    }
}

方法二:哈希表

思路与算法

在方法一中,我们枚举了 x后,遍历数组找出所有的 x和 x+1的出现的次数。我们也可以用一个哈希映射来存储每个数出现的次数,这样就能在 O(1)的时间内得到 x 和 x+1出现的次数。

我们首先遍历一遍数组,得到哈希映射。随后遍历哈希映射,设当前遍历到的键值对为 (x,value),那么我们就查询 x+1在哈希映射中对应的统计次数,就得到了 x 和 x + 1 出现的次数,和谐子序列的长度等于 x 和 x+1出现的次数之和。

class Solution {
    public int findLHS(int[] nums) {
        HashMap <Integer, Integer> cnt = new HashMap <>();
        int res = 0;
        for (int num : nums) {
            //如果有 num 加1
            cnt.put(num, cnt.getOrDefault(num, 0) + 1);
        }
        for (int key : cnt.keySet()) {
            if (cnt.containsKey(key + 1)) {
                res = Math.max(res, cnt.get(key) + cnt.get(key + 1));
            }
        }
        return res;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值