复盘与导出工具最新版V18.0版本更新

应付费用户需求进行更新
1.全页面优化加速,解决盘中勾选自动刷新按钮闪退bug
2.原来连板天梯改名为龙头晋级,新增连板天梯功能
3.修复A股概念板,通达信扫雷,A股股东人数,A股涨停原因需要等待很久的bug,只需加载第一次即可,无需再次加载
4.解决勾选窗口置顶后无法移动软件位置的bug
5.增加题材库 的同一股票 颜色联动
6.东财智能选股对历史输入的有提示,无需每次重新手动输入
7.修复龙虎席位历史数据的净买入,流通市值统计错误的严重bug

首先全部功能优化加速,减少盘中闪退bug,然后就是把之前的连板天梯改为龙头晋级,新增涨停表现/连板天梯
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

<think>好的,我现在需要帮助用户解决如何导出股票tick数据以进行复盘的问题。首先,用户的需求是从交易平台或数据源导出这些数据,用于交易后的分析。我应该先考虑用户可能接触到的常见数据来源,比如交易平台提供的导出功能,第三方数据服务商,或者API接口。 根据引用[2],提到jsQR导出一个方法需要图像数据、宽、高和可选配置对象。这可能和API的使用有关,所以可以联想到通过交易平台的API获取数据。比如,很多交易平台如TradingView、Alpaca或者国内的券商可能提供API来获取实时或历史数据,包括tick级别的。 接下来,引用[1]中提到了使用Excel的数据透视表来分析定类数据,比如卡方检验等方法。这可能意味着用户对数据处理有一定的基础,可能需要指导如何将导出的数据整理成适合分析的格式,比如CSV或Excel文件。因此,在回答中应该提到数据导出的格式和处理步骤。 引用[3]中的ANR-WatchDog原理涉及到线程和消息处理,这可能实时数据抓取有关,比如通过编写脚本或程序定时从API获取数据,避免主线程阻塞。不过这可能更偏向于技术实现,用户可能需要了解如何自动化导出数据的过程。 用户可能没有提到的点包括数据清洗和合规性问题。比如,导出数据时需要注意平台的权限和合规性要求,确保不违反用户协议。此外,tick数据量通常很大,存储和管理也是一个需要考虑的问题,可能需要使用数据库或者专门的数据分析工具。 然后,我需要整理步骤:首先确定数据源,比如交易平台、第三方数据提供商或开源数据集;然后使用平台提供的导出功能或API获取数据;接着处理数据格式,保存为CSV等;最后进行复盘分析,可能结合引用[1]中的统计方法或机器学习模型。 还要考虑用户可能遇到的问题,比如免费数据源的局限性,付费数据的成本,或者API调用的技术门槛。因此,在回答中需要提到这些注意事项,并建议合适的工具或库,比如Python的pandas处理数据,requests调用API等。 最后,生成相关问题,比如如何清洗tick数据,或实时获取数据的方法,引导用户进一步学习。</think>### 如何导出股票Tick数据用于复盘分析 #### 1. **选择数据来源** - **交易平台内置导出功能** 部分券商或交易软件(如TradingView、Wind、同花顺)支持直接导出历史Tick数据。操作步骤通常为:登录平台 → 进入历史数据模块 → 选择股票代码和时间范围 → 导出为CSV/Excel文件[^2]。 - **第三方数据服务商** 如聚宽、万得(Wind)、天勤量化等提供付费Tick数据接口,支持按需导出。需注意数据格式(如时间戳、买卖盘口、成交量)的完整性[^1]。 - **API接口调用** 通过券商或金融数据API(如Alpaca、Tushare)编程获取数据。例如使用Python的`requests`库调用接口,返回JSON或CSV格式数据: ```python import requests response = requests.get("https://api.example.com/tick_data?symbol=000001.SZ&start=20230101") data = response.json() ``` #### 2. **数据导出清洗** - **格式标准化** Tick数据通常包含时间戳(精确到毫秒)、最新价、成交量、买卖盘口等字段。需统一时间格式(如UTC+8)并去除异常值(如负价格)[^1]。 - **存储优化** 高频Tick数据量庞大,建议使用数据库(如MySQL、InfluxDB)或压缩文件(如Parquet)存储。例如用Python的`pandas`处理: ```python import pandas as pd df = pd.read_csv("tick_data.csv") df.to_parquet("tick_data.parquet", compression="snappy") ``` #### 3. **复盘分析工具** - **可视化工具** 使用Matplotlib或Plotly绘制分时图、盘口深度图,例如: ```python import plotly.express as px fig = px.line(df, x="timestamp", y="price", title="Tick Price Trend") fig.show() ``` - **统计回测** 结合引用[1]中的卡方检验、相关系数方法,分析量价关系。可通过回测框架(如Backtrader)验证策略。 #### 注意事项 - **合规性**:确保数据获取符合平台协议,避免侵犯版权。 - **数据质量**:检查是否存在断点或滑点,可通过插值法修补缺失值。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值