初中数学笔记

第七章 幂的运算

7.1同底数幂的乘法

a m . a n = a m + n a^m.a^n=a^{m+n} am.an=am+n
反向公式: a m + n = a m . a n 反向公式:a^{m+n}=a^m.a^n 反向公式:am+n=am.an
同底数相乘,底数不变,指数相加
容易出错的地方:
( − x ) n 的底为 − x ; − x n 的底是 x (-x)^n的底为-x;-x^n的底是x (x)n的底为x;xn的底是x
n 是奇数时 : ( − x ) n = − x n ; ( a − b ) n = − ( b − a ) n n是奇数时:(-x)^n=-x^n;(a-b)^n=-(b-a)^n n是奇数时:(x)n=xn;(ab)n=(ba)n
n 是偶数时 : ( − x ) n = x n ; ( a − b ) n = ( b − a ) n n是偶数时:(-x)^n=x^n;(a-b)^n=(b-a)^n n是偶数时:(x)n=xn;(ab)n=(ba)n

本节课通过5道练习题的解析,让大家掌握同底数幂乘法公式在各种常见题型中如何灵活使用,大家一定要用心体会何时应该使用同底数幂乘法公式进行简化式子;何时应该使用反向公式“复杂化”式子;不要忘了使用公式的前提是同底,不同底要化为同底。
在这里插入图片描述

1.【解】
( − a ) 3 . a 2 . a n = ( − a ) 8 (-a)^3.a^2.a^n=(-a)^8 (a)3.a2.an=(a)8
= ( − a ) − 3 + 2 + n = ( − a ) 8 =(-a)^{-3+2+n}=(-a)^8 =(a)3+2+n=(a)8
∴ ( − a ) n = − a 3 \therefore(-a)^n=-a^3 (a)n=a3

2.【解】
( − 2 ) 99 + ( − 2 ) 100 (-2)^{99}+(-2)^{100} (2)99+(2)100
= ( − 2 ) 99 + ( − 2 ) 99 × − 2 =(-2)^{99}+(-2)^{99}\times-2 =(2)99+(2)99×2
令 x = ( − 2 ) 99 令x=(-2)^{99} x=(2)99
原式 = x + x × − 2 原式=x+x\times-2 原式=x+x×2
合并同类项 : x ( 1 − 2 ) = − 2 x 合并同类项:x(1-2)=-2x 合并同类项:x(12)=2x
= ( − 2 ) 99 =(-2)^{99} =(2)99

3.【解】
2 x + 2 y = 8 2^x+2^y=8 2x+2y=8
2 x + 2 y = 2 3 2^x+2^y=2^3 2x+2y=23
( 0 , 3 ) , ( 1 , 2 ) , ( 2 , 1 ) (0,3),(1,2),(2,1) (0,3),(1,2),(2,1)
∴ 3 x + 3 y = 27 \therefore3^x+3^y=27 3x+3y=27

4.【解】
2 x + 1 = 2 x − 1 + 2 2^{x+1}=2^{x-1+2} 2x+1=2x1+2
= 2 x − 1 . 2 2 =2^{x-1}.2^2 =2x1.22
∵ 2 x − 1 = 6 \because2^{x-1}=6 2x1=6
∴ 2 x + 1 = 6 × 2 2 = 6 × 4 = 24 \therefore2^{x+1}=6\times2^2=6\times4=24 2x+1=6×22=6×4=24

5.【解】
x . x a . x 2 a + 1 = x 29 x.x^a.x^{2a+1}=x^{29} x.xa.x2a+1=x29
1+a+(2a+1)=29
a=9

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笑大爷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值