模型轻量化中的量化(Quantization)——定点量化详解

模型轻量化中的量化(Quantization)——定点量化详解

目录

  1. 简介
  2. 定点量化的基本概念
  3. 定点量化的数学基础
  4. 定点量化的步骤
  5. 定点量化的方法
  6. 定点量化的优缺点
  7. 定点量化的应用实例
  8. 代码示例
  9. 总结

简介

随着深度学习模型规模的不断扩大,模型在存储和计算上的需求也日益增加,给实际应用尤其是边缘设备上的部署带来了巨大的挑战。量化(Quantization)作为一种有效的模型轻量化技术,通过将模型的高精度参数和激活值转换为低精度表示,显著减少模型的存储空间和计算量。其中,定点量化(Fixed-Point Quantization)是一种常见的量化方法,广泛应用于各种深度学习框架和硬件加速器中。本文将详细介绍定点量化的基本概念、数学基础、具体步骤和方法,并通过代码示例展示其实现过程。

定点量化的基本概念

定点量化是指将浮点数表示的模型参数和激活值转换为定点数表示,以降低数值精度,从而减少存储空间和计算资源。定点数通常由整数部分和小数部分组成,通过缩放因子(Scale)和零点(Zero Point)来映射浮点数到定点数的范围。

主要术语

  • 量化位宽(Bit Width):表示量化后定点数所使用的位数,常见的有8位、16位等。
  • 缩放因子(Scale):用于将浮点数映射到定点数范围的比例因子。
  • 零点(Zero Point):用于将浮点数的零值映射到定点数的对应值,通常为整数。

定点量化的数学基础

定点量化的核心在于找到合适的缩放因子和零点,将浮点数 x x x 映射到定点数 q q q,其过程可以表示为:

q = round ( x s ) + z q = \text{round}\left(\frac{x}{s}\right) + z q=round(sx)+z

其中:

  • s s s 是缩放因子(Scale)。
  • z z z 是零点(Zero Point)。
  • round \text{round} round 表示四舍五入操作。

反量化过程将定点数 q q q 转换回浮点数 x ′ x' x

x ′ = s × ( q − z ) x' = s \times (q - z) x=s×(qz)

对称量化与非对称量化

  • 对称量化:零点 z z z 通常为零,量化范围对称分布于零点两侧。

    q = clip ( round ( x / s ) , q min , q max ) q = \text{clip}(\text{round}(x / s), q_{\text{min}}, q_{\text{max}}) q=clip(round(x/s),qmin,qmax

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值