模型轻量化中的量化(Quantization)——定点量化详解
目录
- 简介
- 定点量化的基本概念
- 定点量化的数学基础
- 定点量化的步骤
- 定点量化的方法
- 5.1 对称量化
- 5.2 非对称量化
- 5.3 逐层量化与逐通道量化
- 定点量化的优缺点
- 定点量化的应用实例
- 代码示例
- 8.1 代码说明
- 总结
简介
随着深度学习模型规模的不断扩大,模型在存储和计算上的需求也日益增加,给实际应用尤其是边缘设备上的部署带来了巨大的挑战。量化(Quantization)作为一种有效的模型轻量化技术,通过将模型的高精度参数和激活值转换为低精度表示,显著减少模型的存储空间和计算量。其中,定点量化(Fixed-Point Quantization)是一种常见的量化方法,广泛应用于各种深度学习框架和硬件加速器中。本文将详细介绍定点量化的基本概念、数学基础、具体步骤和方法,并通过代码示例展示其实现过程。
定点量化的基本概念
定点量化是指将浮点数表示的模型参数和激活值转换为定点数表示,以降低数值精度,从而减少存储空间和计算资源。定点数通常由整数部分和小数部分组成,通过缩放因子(Scale)和零点(Zero Point)来映射浮点数到定点数的范围。
主要术语
- 量化位宽(Bit Width):表示量化后定点数所使用的位数,常见的有8位、16位等。
- 缩放因子(Scale):用于将浮点数映射到定点数范围的比例因子。
- 零点(Zero Point):用于将浮点数的零值映射到定点数的对应值,通常为整数。
定点量化的数学基础
定点量化的核心在于找到合适的缩放因子和零点,将浮点数 x x x 映射到定点数 q q q,其过程可以表示为:
q = round ( x s ) + z q = \text{round}\left(\frac{x}{s}\right) + z q=round(sx)+z
其中:
- s s s 是缩放因子(Scale)。
- z z z 是零点(Zero Point)。
- round \text{round} round 表示四舍五入操作。
反量化过程将定点数 q q q 转换回浮点数 x ′ x' x′:
x ′ = s × ( q − z ) x' = s \times (q - z) x′=s×(q−z)
对称量化与非对称量化
-
对称量化:零点 z z z 通常为零,量化范围对称分布于零点两侧。
q = clip ( round ( x / s ) , q min , q max ) q = \text{clip}(\text{round}(x / s), q_{\text{min}}, q_{\text{max}}) q=clip(round(x/s),qmin,qmax