盲源估计(Blind Source Separation, BSS)详解:源数量估计
目录
引言
在信号处理领域,盲源估计(Blind Source Separation, BSS)是一项关键技术,旨在从多个混合信号中恢复出原始的独立信号源。在实际应用中,源数量的准确估计是成功分离的前提。因此,源数量估计成为BSS中的一个重要研究方向。
什么是盲源估计(BSS)
盲源估计是一种从观测到的多个混合信号中恢复出原始独立信号源的技术。其特点是对混合过程的具体信息(如混合矩阵)缺乏先验知识,因此被称为“盲”源估计。数学上,BSS通常基于以下线性混合模型:
x ( t ) = A s ( t ) \mathbf{x}(t) = \mathbf{A} \mathbf{s}(t) x(t)=As(t)
其中:
- x ( t ) = [ x 1 ( t ) , x 2 ( t ) , … , x m ( t ) ] T \mathbf{x}(t) = [x_1(t), x_2(t), \ldots, x_m(t)]^T x(t)=[x1(t),x2(t),…,xm(t)]T 是观测到的混合信号向量。
- s ( t ) =