标量量化与矢量量化详解

标量量化与矢量量化详解

引言

在数字信号处理、数据压缩和机器学习等领域,量化是一个不可或缺的重要技术。量化是指将连续取值(或大量可能的离散取值)映射为有限多个离散值的过程,实现信号取值的多对一映射。本文将深入浅出地介绍标量量化和矢量量化的概念、原理,并附上详细的数学公式和理论推导。量化在数字信号处理领域是指将信号的连续取值近似为有限多个离散值的过程,主要应用于从连续信号到数字信号的转换中。

一、量化的基本概念

量化是数据压缩和信号处理的关键技术之一,它允许我们用更精简的形式表示信息,同时保持足够的精度。根据处理单元的不同,量化可以分为标量量化和矢量量化两种基本形式。

1.1 为什么需要量化?

在现实应用中,无论是模拟信号的数字化,还是数据的高效存储和传输,都需要量化技术。量化的主要目的包括:

  • 降低数据存储需求
  • 减少传输带宽
  • 加速计算处理
  • 适应有限精度的硬件设备

然而,量化是一种有损处理,它不可避免地会引入量化误差。量化处理的艺术在于权衡数据压缩率与保持信息完整性之间的平衡。

1.2 量化的数学基础:速率失真理论

量化技术的理论基础是香农的速率失真理论。对于一个信源 X X X 和失真度量 d d d,速率失真函数 R ( D ) R(D) R(D) 定义为实现平均失真小于等于 D D D 所需的最小比特率。

数学上,速率失真函数可以表示为:

R ( D ) = min ⁡ p ( y ∣ x ) : E [ d ( X , Y ) ] ≤ D I ( X ; Y ) R(D) = \min_{p(y|x): \mathbb{E}[d(X,Y)] \leq D} I(X;Y) R(D)=p(yx):E[d(X,Y)]DminI(X;Y)

其中 I ( X ; Y ) I(X;Y) I(X;Y) 是输入 X X X 和输出 Y Y Y 之间的互信息,定义为:

I ( X ; Y ) = ∬ p ( x , y ) log ⁡ p ( x , y ) p ( x ) p ( y ) d x d y I(X;Y) = \iint p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dx dy I(X;Y)=p(x,y)logp(x)p(y)p(x,y)dxdy

而平均失真定义为:

E [ d ( X , Y ) ] = ∬ p ( x , y ) d ( x , y ) d x d y \mathbb{E}[d(X,Y)] = \iint p(x,y) d(x,y) dx dy E[d(X,Y)]=p(x,y)d(x,y)dxdy

这个理论提供了量化的理论极限,即在给定失真约束下,信号编码所需的最小比特率。

二、标量量化

2.1 标量量化的定义

标量量化是仅考虑一个采样点的量化问题,将一个连续幅度值转变成离散幅度值 x ^ = Q ( x ) \hat{x}=Q(x) x^=Q(x)。简单来说,标量量化就是对信号样本逐个进行量化,每次只处理一个数值。这是最基本的量化形式,也是最常见的量化方法。

2.2 标量量化的数学表示

标量量化器可以用一个映射函数 Q Q Q 表示:

Q : R → { y 1 , y 2 , . . . , y M } Q: \mathbb{R} \rightarrow \{y_1, y_2, ..., y_M\} Q:R{y1,y2,...,yM}

其中, { y 1 , y 2 , . . . , y M } \{y_1, y_2, ..., y_M\} {y1,y2,...,yM} 是一组有限的离散值,称为量化电平或重建值。量化过程可以描述为:将输入信号 x x x 的取值范围划分为 M M M 个互不相交的区间:

I q = [ t q , t q + 1 ) , q = 0 , 1 , . . . , M − 1 I_q = [t_q, t_{q+1}), q = 0, 1, ..., M-1 Iq=[tq,tq+1),q=0,1,...,M1

其中, t q t_q tq 为区间端点,称为量化器的判定边界。对于落入区间 I q I_q Iq 中的任何输入值 x x x,量化器都输出相应的重建值 y q y_q yq

Q ( x ) = y q , if  x ∈ I q Q(x) = y_q, \text{if } x \in I_q Q(x)=yq,if xIq

2.3 均匀量化与非均匀量化

标量量化可以进一步分为均匀量化和非均匀量化两种类型。

2.3.1 均匀量化

均匀量化是一种将信号连续幅度均匀分层的量化方法。它的特点是所有量化区间的宽度相等,即量化步长(也称为量化间隔)恒定。

均匀量化的数学表示:

假设信号的取值范围为 [ a , b ] [a, b] [a,b],量化电平数为 M M M,则均匀量化的量化步长为:

Δ = b − a M \Delta = \frac{b - a}{M} Δ=Mba

量化区间的端点为:

t q = a + q Δ , q = 0 , 1 , . . . , M t_q = a + q\Delta, q = 0, 1, ..., M tq=a+qΔ,q=0,1,...,M

若量化输出电平取量化间隔的中点,则重建值为:

y q = a + ( q + 1 2 ) Δ , q = 0 , 1 , . . . , M − 1 y_q = a + (q + \frac{1}{2})\Delta, q = 0, 1, ..., M-1 yq=a+(q+21)Δ,q=0,1,...,M1

2.3.2 非均匀量化

非均匀量化是指量化区间可以不等长的量化方法。在非均匀量化中,量化步长可以根据信号的统计特性进行调整,通常在信号概率密度函数(PDF)较大的区域使用较小的量化步长,而在PDF较小的区域使用较大的量化步长。非均匀量化的目的:通过不均匀分配量化资源,使量化误差在整个信号范围内更为均衡,从而提高整体的信噪比。

非均匀量化通常有两种实现方法:

  1. 直接非均匀量化:直接设计不等长的量化区间
  2. 压扩量化(Companded Quantization):先对信号进行非线性变换(压缩),然后进行均匀量化,最后在解码时进行相反的非线性变换(扩张)

压扩量化的数学表示:

y = Q ( C ( x ) ) y = Q(C(x)) y=Q(C(x))

其中, C ( x ) C(x) C(x) 是压缩函数, Q Q Q 是均匀量化器。常用的压缩函数包括 μ \mu μ-律和 A-律,它们是对数函数的近似。

A律压缩函数的数学表达式:

C A ( x ) = { sgn ( x ) 1 + log ⁡ ( A ∣ x ∣ ) 1 + log ⁡ A , if  ∣ x ∣ ≥ 1 A sgn ( x ) A ∣ x ∣ 1 + log ⁡ A , if  ∣ x ∣ < 1 A C_A(x) = \begin{cases} \text{sgn}(x) \frac{1+\log(A|x|)}{1+\log A}, & \text{if } |x| \geq \frac{1}{A} \\ \text{sgn}(x) \frac{A|x|}{1+\log A}, & \text{if } |x| < \frac{1}{A} \end{cases} CA(x)={sgn(x)1+logA1+log(Ax),sgn(x)1+logAAx,if xA1if x<A1

其中, A A A 是压扩参数,通常取值为87.6。

2.4 量化误差与信噪比

量化误差是指在量化过程引起的误差,表现为量化结果和被量化模拟量之间存在差值。这种差值在输出端体现为引入了量化噪声。对于均匀量化,量化误差 e = x − Q ( x ) e = x - Q(x) e=xQ(x) 通常假设为均匀分布在 [ − Δ / 2 , Δ / 2 ] [-\Delta/2, \Delta/2] [Δ/2,Δ/2] 范围内的随机变量,其均值为 0,方差为:

σ e 2 = Δ 2 12 \sigma_e^2 = \frac{\Delta^2}{12} σe2=12Δ2

对于均匀分布的信号源,其信噪比(SNR)为:

SNR = σ x 2 σ e 2 = ( b − a ) 2 / 12 Δ 2 / 12 = ( b − a ) 2 Δ 2 = M 2 \text{SNR} = \frac{\sigma_x^2}{\sigma_e^2} = \frac{(b-a)^2/12}{\Delta^2/12} = \frac{(b-a)^2}{\Delta^2} = M^2 SNR=σe2σx2=Δ2/12(ba)2/12=Δ2(ba)2=M2

以分贝(dB)表示:

SNR(dB) = 10 log ⁡ 10 ( M 2 ) = 20 log ⁡ 10 ( M ) = 6.02 n  dB \text{SNR(dB)} = 10\log_{10}(M^2) = 20\log_{10}(M) = 6.02n \text{ dB} SNR(dB)=10log10(M2)=20log10(M)=6.02n dB

其中, n = log ⁡ 2 ( M ) n = \log_2(M) n=log2(M) 是量化位数。这表明,每增加一位量化位数,信噪比大约提高 6 dB。

对于一般分布的信号,假设概率密度函数为 f X ( x ) f_X(x) fX(x),量化误差的方差为:

σ e 2 = ∑ i = 1 M ∫ t i − 1 t i ( x − y i ) 2 f X ( x ) d x \sigma_e^2 = \sum_{i=1}^M \int_{t_{i-1}}^{t_i} (x-y_i)^2 f_X(x) dx σe2=i=1Mti1ti(xyi)2fX(x)dx

2.5 最优量化:Lloyd-Max 量化器

Lloyd-Max 量化器(也称为 PDF 最佳量化器)是一种优化量化方法,它通过最小化均方量化误差来确定最佳的量化边界和重建值。假设信源 X X X 的概率密度函数为 f X ( x ) f_X(x) fX(x),量化区间为 [ t i − 1 , t i ] [t_{i-1}, t_i] [ti1,ti],对应的重建值为 y i y_i yi,则平均失真为:

D = E [ ( X − Q ( X ) ) 2 ] = ∑ i = 1 M ∫ t i − 1 t i ( x − y i ) 2 f X ( x ) d x D = \mathbb{E}[(X - Q(X))^2] = \sum_{i=1}^M \int_{t_{i-1}}^{t_i} (x-y_i)^2 f_X(x) dx D=E[(XQ(X))2]=i=1Mti1ti(xyi)2fX(x)dx

为了最小化平均失真 D D D,对 y i y_i yi t i t_i ti 分别求导并令其等于零:

∂ D ∂ y i = 0    ⟹    y i = ∫ t i − 1 t i x f X ( x ) d x ∫ t i − 1 t i f X ( x ) d x \frac{\partial D}{\partial y_i} = 0 \implies y_i = \frac{\int_{t_{i-1}}^{t_i} x f_X(x) dx}{\int_{t_{i-1}}^{t_i} f_X(x) dx} yiD=0yi=ti1tifX(x)dxti1tixfX(x)dx

∂ D ∂ t i = 0    ⟹    t i = y i + y i + 1 2 \frac{\partial D}{\partial t_i} = 0 \implies t_i = \frac{y_i + y_{i+1}}{2} tiD=0ti=2yi+yi+1

这两个条件是Lloyd-Max量化器的设计条件,它们形成了一个迭代算法的基础:

  1. 初始化量化边界 { t i } \{t_i\} {ti}
  2. 根据当前边界,计算最优重建值 { y i } \{y_i\} {yi}
  3. 根据当前重建值,更新量化边界 { t i } \{t_i\} {ti}
  4. 如果边界变化很小,则停止;否则返回步骤2

2.6 高阶量化理论:信息论视角

从信息论的角度看,量化可以被视为一个通信信道。如果我们将信源 X X X 的概率分布记为 p X ( x ) p_X(x) pX(x),量化后的随机变量 Y = Q ( X ) Y = Q(X) Y=Q(X) 的概率分布记为 p Y ( y ) p_Y(y) pY(y),则量化引起的信息损失可以用互信息 I ( X ; Y ) I(X;Y) I(X;Y) 来度量:

I ( X ; Y ) = H ( X ) − H ( X ∣ Y ) I(X;Y) = H(X) - H(X|Y) I(X;Y)=H(X)H(XY)

其中, H ( X ) H(X) H(X) 是信源的熵, H ( X ∣ Y ) H(X|Y) H(XY) 是给定 Y Y Y 条件下 X X X 的条件熵。

对于高阶量化,我们可以引入速率-失真函数 R ( D ) R(D) R(D),它表示在平均失真不超过 D D D 的条件下,对信源进行编码所需的最小比特率。对于均方失真度量,当信源服从高斯分布 N ( 0 , σ X 2 ) \mathcal{N}(0, \sigma_X^2) N(0,σX2) 时,速率-失真函数为:

R ( D ) = { 1 2 log ⁡ 2 ( σ X 2 D ) , if  0 ≤ D ≤ σ X 2 0 , if  D > σ X 2 R(D) = \begin{cases} \frac{1}{2}\log_2\left(\frac{\sigma_X^2}{D}\right), & \text{if } 0 \leq D \leq \sigma_X^2 \\ 0, & \text{if } D > \sigma_X^2 \end{cases} R(D)={21log2(DσX2),0,if 0DσX2if D>σX2

这表明,当允许的失真 D D D 越小,所需的比特率 R R R 越高,反之亦然。

2.7 高精度量化下的熵约束量化

在高精度量化的情况下,即量化步长 Δ \Delta Δ 很小时,我们可以引入熵约束量化的概念。熵约束量化的目标是在给定输出熵的约束下最小化失真,或者在给定失真约束下最小化输出熵。假设量化器的输出熵为 H ( Y ) H(Y) H(Y),则熵约束量化问题可以表述为:

min ⁡ Q D ( Q ) subject to H ( Y ) ≤ R \min_{Q} D(Q) \quad \text{subject to} \quad H(Y) \leq R QminD(Q)subject toH(Y)R

其中, D ( Q ) D(Q) D(Q) 是量化器 Q Q Q 引起的平均失真。

对于高精度量化,当量化步长趋于零时,可以证明最优的量化步长分布应该与信源概率密度函数成反比:

Δ ( x ) ∝ [ f X ( x ) ] − 1 / 3 \Delta(x) \propto [f_X(x)]^{-1/3} Δ(x)[fX(x)]1/3

这一结果表明,在信源概率密度高的区域应使用较小的量化步长,在概率密度低的区域应使用较大的量化步长,这正是非均匀量化的理论基础。

三、矢量量化

3.1 矢量量化的定义

矢量量化(Vector Quantization,VQ)是20世纪70年代后期发展起来的一种有效的有损压缩技术,其理论基础是香农的速率失真理论。与标量量化不同,矢量量化是将若干个样本点组成一个矢量,然后对该矢量整体进行量化。矢量量化可以看作是标量量化的高维扩展。在矢量量化中,我们不再逐个处理样本点,而是将 k k k 个连续的样本组合成一个 k k k 维向量,并将这个向量映射到一组预先定义的典型向量(称为码字)之一。

3.2 矢量量化的数学表示

矢量量化器可以用一个映射函数 Q Q Q 表示:

Q : R k → C = { y 1 , y 2 , . . . , y N } ⊂ R k Q: \mathbb{R}^k \rightarrow \mathcal{C} = \{y_1, y_2, ..., y_N\} \subset \mathbb{R}^k Q:RkC={y1,y2,...,yN}Rk

其中, C = { y 1 , y 2 , . . . , y N } \mathcal{C} = \{y_1, y_2, ..., y_N\} C={y1,y2,...,yN} 是一组 k k k 维向量,称为码字(codewords),它们组成了码本(codebook)。

矢量量化过程可以描述为:将 k k k 维输入向量 x x x 映射到码本中的某个码字 y i y_i yi,通常选择与输入向量距离最小的码字:

Q ( x ) = y i , if  d ( x , y i ) ≤ d ( x , y j )  for all  j ≠ i Q(x) = y_i, \text{if } d(x, y_i) \leq d(x, y_j) \text{ for all } j \neq i Q(x)=yi,if d(x,yi)d(x,yj) for all j=i

其中, d ( x , y ) d(x, y) d(x,y) 是某种距离度量,通常使用欧几里得距离:

d ( x , y ) = ∥ x − y ∥ 2 = ∑ j = 1 k ( x j − y j ) 2 d(x, y) = \|x - y\|_2 = \sqrt{\sum_{j=1}^k (x_j - y_j)^2} d(x,y)=xy2=j=1k(xjyj)2

3.3 矢量量化的基本原理

矢量量化的基本原理是用码书中与输入矢量最匹配的码字的索引代替输入矢量进行传输与存储,而解码时仅需要简单地查表操作。矢量量化的工作流程如下:

  1. 设计码本:通过分析大量训练数据,生成一组能够代表输入数据分布的码字
  2. 编码:将输入向量映射到最近的码字,并传输该码字的索引
  3. 解码:接收方根据接收到的索引,从同样的码本中查找出对应的码字

3.4 矢量量化的理论优势

矢量量化相对于标量量化有以下理论优势:

  1. 更高的压缩效率:矢量量化的突出优点是压缩比大、解码简单且能够很好地保留信号的细节。

  2. 理论上的优越性:"率-失真理论"指出:矢量量化总是优于标量量化,且矢量维数越大性能越优越,因为矢量量化有效地应用了矢量中的各分量间的各种相互关联的性质。

矢量量化的优越性源于三种增益:

  1. 空间填充增益(Space-Filling Gain):在高维空间中,矢量量化可以实现更有效的空间划分,减少量化误差。数学上,对于 k k k 维空间,空间填充增益为:

    G s f ( k ) = 1 k log ⁡ 2 V k ( S ) V k ( C ) G_{sf}(k) = \frac{1}{k} \log_2 \frac{V_k(\mathcal{S})}{V_k(\mathcal{C})} Gsf(k)=k1log2Vk(C)Vk(S)

    其中, V k ( S ) V_k(\mathcal{S}) Vk(S) k k k 维超球体的体积, V k ( C ) V_k(\mathcal{C}) Vk(C) 是最优填充的基本单元的体积。

  2. 形状增益(Shape Gain):矢量量化可以更好地适应多维概率分布的形状。当信源分布不均匀时,形状增益更为显著。

  3. 内存增益(Memory Gain):当信源样本之间存在相关性时,矢量量化可以利用这种相关性,获得额外的增益。

3.5 码本设计:LBG 算法

LBG 算法(由 Linde、Buzo 和 Gray 提出)是一种经典的码本设计算法,它通过迭代优化来生成矢量量化的码本。

LBG 算法的基本步骤如下:

  1. 初始化:随机选择 N N N 个训练向量作为初始码字
  2. 最近邻规则(聚类):将所有训练向量分配给与其距离最小的码字,形成 N N N 个聚类
  3. 质心计算:计算每个聚类的质心(均值向量),作为新的码字
  4. 失真计算:计算总失真(所有训练向量到其最近码字的平均距离)
  5. 收敛检查:如果总失真的相对减少小于阈值,则停止;否则返回步骤 2

LBG 算法的数学表示:

假设有训练集 T = { x 1 , x 2 , . . . , x M } \mathcal{T} = \{x_1, x_2, ..., x_M\} T={x1,x2,...,xM} 和初始码本 C = { y 1 , y 2 , . . . , y N } \mathcal{C} = \{y_1, y_2, ..., y_N\} C={y1,y2,...,yN},则算法迭代过程如下:

  1. 对每个训练向量 x j x_j xj,找到最近的码字:

    i ( j ) = arg ⁡ min ⁡ i ∈ { 1 , 2 , . . . , N } d ( x j , y i ) i(j) = \arg\min_{i \in \{1,2,...,N\}} d(x_j, y_i) i(j)=argi{1,2,...,N}mind(xj,yi)

  2. 对每个码字 y i y_i yi,更新为其对应聚类的质心:

    y i = 1 ∣ S i ∣ ∑ j ∈ S i x j y_i = \frac{1}{|S_i|}\sum_{j \in S_i} x_j yi=Si1jSixj

    其中, S i = { j : i ( j ) = i } S_i = \{j : i(j) = i\} Si={j:i(j)=i} 是分配给码字 y i y_i yi 的训练向量的索引集合。

  3. 计算平均失真:

    D = 1 M ∑ j = 1 M d ( x j , y i ( j ) ) D = \frac{1}{M}\sum_{j=1}^M d(x_j, y_{i(j)}) D=M1j=1Md(xj,yi(j))

  4. 如果 ( D o l d − D ) / D o l d < ϵ (D_{old} - D) / D_{old} < \epsilon (DoldD)/Dold<ϵ,则停止;否则返回步骤 1。

3.6 码本初始化方法:分裂算法

在实际应用中,LBG 算法的初始码本对最终结果有重要影响。分裂算法(Splitting Algorithm)是一种常用的码本初始化方法,它从一个码字开始,通过逐步分裂生成所需数量的码字。分裂算法的步骤如下:

  1. 用训练集的质心初始化一个码字: C 1 = { y 1 } \mathcal{C}_1 = \{y_1\} C1={y1},其中 y 1 = 1 M ∑ j = 1 M x j y_1 = \frac{1}{M}\sum_{j=1}^M x_j y1=M1j=1Mxj
  2. 将每个码字分裂成两个: y i + = y i ( 1 + ϵ ) y_i^+ = y_i(1+\epsilon) yi+=yi(1+ϵ) y i − = y i ( 1 − ϵ ) y_i^- = y_i(1-\epsilon) yi=yi(1ϵ),其中 ϵ \epsilon ϵ 是一个小的扰动参数
  3. 使用 LBG 算法优化新生成的码本
  4. 如果码字数量达到目标值,则停止;否则返回步骤 2

通过这种方式,码本大小以指数方式增长: 1 → 2 → 4 → 8 → . . . → N 1 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow ... \rightarrow N 1248...N,其中 N N N 是目标码字数量。

3.7 量化边界和失真分析

矢量量化器将 k k k 维空间划分为 N N N 个区域,每个区域对应一个码字。这些区域称为 Voronoi 区域,定义为:

V i = { x ∈ R k : d ( x , y i ) ≤ d ( x , y j )  for all  j ≠ i } V_i = \{x \in \mathbb{R}^k : d(x, y_i) \leq d(x, y_j) \text{ for all } j \neq i\} Vi={xRk:d(x,yi)d(x,yj) for all j=i}

对于欧几里得距离,Voronoi 区域的边界是由超平面组成的,这些超平面是相邻码字的中垂面。对于给定的码本 C = { y 1 , y 2 , . . . , y N } \mathcal{C} = \{y_1, y_2, ..., y_N\} C={y1,y2,...,yN} 和训练集 T = { x 1 , x 2 , . . . , x M } \mathcal{T} = \{x_1, x_2, ..., x_M\} T={x1,x2,...,xM},平均失真为:

D = 1 M ∑ j = 1 M d ( x j , Q ( x j ) ) D = \frac{1}{M}\sum_{j=1}^M d(x_j, Q(x_j)) D=M1j=1Md(xj,Q(xj))

从理论上讲,当码字数量 N N N 足够大,且它们在 k k k 维空间中均匀分布时,平均失真与码字数量的关系近似为:

D ≈ c ⋅ N − 2 / k D \approx c \cdot N^{-2/k} DcN2/k

其中, c c c 是一个与信源分布和距离度量有关的常数。这表明,随着维度 k k k 的增加,为了保持相同的失真水平,码字数量需要指数级增长,这就是所谓的"维度灾难"。

3.8 高级矢量量化技术:结构化矢量量化

为了解决传统矢量量化在高维情况下计算复杂度过高的问题,研究者提出了各种结构化矢量量化方法,如:

  1. 树结构矢量量化(Tree-Structured Vector Quantization, TSVQ)

    TSVQ 使用树结构组织码本,减少搜索复杂度。在 TSVQ 中,搜索过程从树的根节点开始,在每一层选择最近的节点,直到达到叶节点。搜索复杂度从 O ( N ) O(N) O(N) 降低到 O ( log ⁡ N ) O(\log N) O(logN)。TSVQ 的失真-率性能与全搜索相比有所降低,但在大型码本中,这种损失通常是可接受的。

  2. 乘积码本(Product Codebook)

    乘积码本将 k k k 维空间分解为 m m m 个低维子空间,每个子空间使用单独的子码本。原始向量被分解为 m m m 个子向量,每个子向量独立量化。假设原始空间为 R k \mathbb{R}^k Rk,分解为 m m m 个子空间 R k 1 × R k 2 × . . . × R k m \mathbb{R}^{k_1} \times \mathbb{R}^{k_2} \times ... \times \mathbb{R}^{k_m} Rk1×Rk2×...×Rkm,其中 k 1 + k 2 + . . . + k m = k k_1 + k_2 + ... + k_m = k k1+k2+...+km=k。每个子空间有 N i N_i Ni 个码字,则总的码字数量为 N = N 1 × N 2 × . . . × N m N = N_1 \times N_2 \times ... \times N_m N=N1×N2×...×Nm。乘积码本的搜索复杂度为 O ( N 1 + N 2 + . . . + N m ) O(N_1 + N_2 + ... + N_m) O(N1+N2+...+Nm),远小于直接搜索的 O ( N 1 × N 2 × . . . × N m ) O(N_1 \times N_2 \times ... \times N_m) O(N1×N2×...×Nm)

  3. 格子矢量量化(Lattice Vector Quantization, LVQ)

    格子矢量量化使用数学上的格点结构作为码字。格点是空间中的规则排列的点集,具有良好的几何性质。在格子量化中,码字是格点 Λ \Lambda Λ 中的点:

    C = Λ ∩ R \mathcal{C} = \Lambda \cap \mathcal{R} C=ΛR

    其中, R \mathcal{R} R 是一个有界区域,通常是超球体或超立方体。由于格子的规则结构,可以使用特殊的快速算法进行最近邻搜索,如减少算法(Conway-Sloane algorithm)。

这些结构化方法通过减少搜索复杂度,使矢量量化在高维应用中变得更加实用。

四、标量量化与矢量量化的理论比较

4.1 压缩性能比较

从理论上讲,矢量量化总是优于标量量化。这一结论来自香农的率失真理论,该理论证明了在相同的比特率下,矢量量化可以达到更低的失真度,且维度越高优势越明显。对于均方失真度量和高斯信源, k k k 维矢量量化相对于标量量化的增益大约为:

G ( k ) ≈ k 2 log ⁡ 2 π e 6 + 1 2 log ⁡ 2 k + o ( 1 ) ≈ 0.254 k + 0.5 log ⁡ 2 k + o ( 1 ) G(k) \approx \frac{k}{2} \log_2 \frac{\pi e}{6} + \frac{1}{2} \log_2 k + o(1) \approx 0.254k + 0.5\log_2 k + o(1) G(k)2klog26πe+21log2k+o(1)0.254k+0.5log2k+o(1)

这表明,随着维度 k k k 的增加,矢量量化的优势越来越显著。

对于拉普拉斯分布的信源,增益更为显著:

G ( k ) ≈ k 2 log ⁡ 2 4 e 3 + 1 2 log ⁡ 2 k + o ( 1 ) ≈ 0.683 k + 0.5 log ⁡ 2 k + o ( 1 ) G(k) \approx \frac{k}{2} \log_2 \frac{4e}{3} + \frac{1}{2} \log_2 k + o(1) \approx 0.683k + 0.5\log_2 k + o(1) G(k)2klog234e+21log2k+o(1)0.683k+0.5log2k+o(1)

4.2 复杂度比较

对于 k k k 维向量和 N N N 个码字的矢量量化器,编码过程需要计算 N N N 次距离,每次距离计算需要 O ( k ) O(k) O(k) 的操作,总复杂度为 O ( k N ) O(kN) O(kN)。而对于标量量化,如果每个标量使用 M M M 个量化电平,则总的量化电平数为 M k M^k Mk。然而,由于每个标量独立量化,编码复杂度仅为 O ( k log ⁡ M ) O(k \log M) O(klogM)

因此,矢量量化的编码复杂度远高于标量量化,特别是当维度 k k k 和码字数 N N N 较大时。

4.3 香农速率失真理论的深入分析

对于连续信源,香农的速率失真理论给出了失真率函数 R ( D ) R(D) R(D) 的下界。对于方差为 σ 2 \sigma^2 σ2 的高斯信源和均方失真度量, R ( D ) R(D) R(D) 为:

R ( D ) = { 1 2 log ⁡ 2 σ 2 D , if  0 ≤ D ≤ σ 2 0 , if  D > σ 2 R(D) = \begin{cases} \frac{1}{2} \log_2 \frac{\sigma^2}{D}, & \text{if } 0 \leq D \leq \sigma^2 \\ 0, & \text{if } D > \sigma^2 \end{cases} R(D)={21log2Dσ2,0,if 0Dσ2if D>σ2

而对于高维高斯信源,其协方差矩阵为 Σ \Sigma Σ R ( D ) R(D) R(D) 为:

R ( D ) = 1 2 ∑ i = 1 k log ⁡ 2 λ i θ , subject to ∑ i = 1 k min ⁡ ( λ i , θ ) = k D R(D) = \frac{1}{2} \sum_{i=1}^k \log_2 \frac{\lambda_i}{\theta}, \quad \text{subject to} \quad \sum_{i=1}^k \min(\lambda_i, \theta) = kD R(D)=21i=1klog2θλi,subject toi=1kmin(λi,θ)=kD

其中, λ i \lambda_i λi Σ \Sigma Σ 的特征值, θ \theta θ 是一个水位参数。

这表明,对于具有相关性的多维信源,矢量量化可以利用这种相关性,获得比独立标量量化更好的性能。

4.4 量化器设计的数学分析

从量化器设计的角度看,标量量化和矢量量化都需要解决两个关键问题:量化区域的划分和重建值的选择。对于标量量化,Lloyd-Max 算法给出了最优解的迭代公式。对于矢量量化,LBG 算法是 Lloyd-Max 算法的高维推广。

两者的设计条件可以统一表示为:

  1. 给定码字集合 C \mathcal{C} C,最优的区域划分是 Voronoi 划分。
  2. 给定区域划分 { V i } \{V_i\} {Vi},最优的码字是每个区域内信源的条件期望。

这些条件是从最小化均方失真的目标导出的。对于更一般的失真度量 d ( x , y ) d(x,y) d(x,y),最优条件可能会有所不同。

4.5 渐近分析:高分辨率量化

在高分辨率情况下(即码字数量很大),矢量量化的性能可以通过渐近分析来研究。对于 k k k 维信源,概率密度函数为 f X ( x ) f_X(x) fX(x),在高分辨率下,最优的码字密度应该正比于 f X ( x ) k / ( k + 2 ) f_X(x)^{k/(k+2)} fX(x)k/(k+2)

λ ( x ) ∝ f X ( x ) k / ( k + 2 ) \lambda(x) \propto f_X(x)^{k/(k+2)} λ(x)fX(x)k/(k+2)

这意味着,在概率密度较高的区域应该分配更多的码字,但这种偏向随着维度 k k k 的增加而减弱。当 k → ∞ k \to \infty k 时,最优码字分布趋向于均匀分布。基于这一结果,高分辨率下的平均失真约为:

D ≈ c k ⋅ N − 2 / k ⋅ ( ∫ f X ( x ) k / ( k + 2 ) d x ) ( k + 2 ) / k D \approx c_k \cdot N^{-2/k} \cdot \left( \int f_X(x)^{k/(k+2)} dx \right)^{(k+2)/k} DckN2/k(fX(x)k/(k+2)dx)(k+2)/k

其中, c k c_k ck 是仅与维度 k k k 和距离度量有关的常数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值