戳气球问题(动态规划)

该博客介绍了如何使用动态规划解决一个经典的计算机科学问题——戳破气球获取最大硬币数。具体场景是有一串数字标记的气球,戳破每个气球会获得与相邻气球数字乘积的硬币,目标是找到最优策略以获取最多硬币。文章通过示例解释了算法的实现过程,并提供了Java代码作为解决方案。
摘要由CSDN通过智能技术生成

题目

有 n 个气球,编号为0 到 n - 1,每个气球上都标有一个数字,这些数字存在数组 nums 中。

现在要求你戳破所有的气球。戳破第 i 个气球,你可以获得 nums[i - 1] * nums[i] * nums[i + 1] 枚硬币。 这里的 i - 1 和 i + 1 代表和 i 相邻的两个气球的序号。如果 i - 1或 i + 1 超出了数组的边界,那么就当它是一个数字为 1 的气球。

求所能获得硬币的最大数量。

示例 1:
输入:nums = [3,1,5,8]
输出:167
解释:
nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
coins = 315 + 358 + 138 + 181 = 167
示例 2:

输入:nums = [1,5]
输出:10

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/burst-balloons
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解答

class Solution {
    public int maxCoins(int[] nums) {
        int n = nums.length;
        int[] points = new int[n + 2];
        for(int i = 0; i < n; i ++){
            points[i + 1] = nums[i];
        }
        points[0] = points[n + 1] = 1;
        int[][] dp = new int[n + 2][n + 2];
        for(int i = n - 1; i >= 0; i --){
            for(int j = i + 2; j < n + 2; j ++){
                for(int k = i + 1; k < j; k ++){
                    dp[i][j] = Math.max(dp[i][j], dp[i][k] + dp[k][j] + points[i] * points[k] * points[j]);

                }
            }
        }
        return dp[0][n + 1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值