第1 -第10个机器学习练习

1.导入scikit-learn库

importsklearn

2.加载数据集

fromsklearn.datasetsimportload_iris
iris=load_iris()
X=iris.data
y=iris.target

3.划分数据集为训练集和测试集


fromsklearn.model_selectionimporttrain_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)

4.标准化特征值

fromsklearn.preprocessingimportStandardScaler
scaler=StandardScaler()
X_train_scaled=scaler.fit_transform(X_train)
X_test_scaled=scaler.transform(X_test)

5.训练线性回归模型


fromsklearn.linear_modelimportLinearRegression
regressor=LinearRegression()
regressor.fit(X_train,y_train)

6.使用k近邻算法分类


fromsklearn.neighborsimportKNeighborsClassifier
classifier=KNeighborsClassifier(n_neighbors=3)
classifier.fit(X_train,y_train)

7.计算决策树分类器的准确率


fromsklearn.treeimportDecisionTreeClassifier
classifier=DecisionTreeClassifier(random_state=42)
classifier.fit(X_train,y_train)
score=classifier.score(X_test,y_test)
print("Accuracy:",score)

8.计算朴素贝叶斯分类器的准确率


fromsklearn.naive_bayesimportGaussianNB
classifier=GaussianNB()
classifier.fit(X_train,y_train)
score=classifier.score(X_test,y_test)
print("Accuracy:",score)

9.计算支持向量机分类器的准确率


fromsklearn.svmimportSVC
classifier=SVC(random_state=42)
classifier.fit(X_train,y_train)
score=classifier.score(X_test,y_test)
print("Accuracy:",score)

10.训练随机森林模型


fromsklearn.ensembleimportRandomForestClassifier
classifier=RandomForestClassifier(n_estimators=100,random_state=42)
classifier.fit(X_train,y_train)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sky wide

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值