[动态规划] Leetcode 96. 不同的二叉搜索树
题目
给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。
思路
- 确定dp数组的含义:dp[i]:从1到i为节点组成的二叉搜索树的个数为dp[i]
- 状态转移方程:定一移二,对每一个dp[i],有dp[i] += dp[以j为头节点左子树节点 数量] * dp[以j为头节点右子树节点的数量],j相当于是头节点的元素,从1遍历到i为止,dp[i] = dp[j - 1] * dp[i - j],j - 1表示以j为头节点左子树节点的数量,i - j表示以j为头节点右子树节点的数量,j相当于是头节点的元素,从1遍历到i为止
- dp数组的初始化:dp[0] = 1
- 确定遍历顺序:外层循环从1开始遍历到n,对于每一个i作为头节点的情况,用j来进行遍历
代码
class Solution {
public:
int numTrees(int n) {
vector<int> dp(n + 1);
dp[0] = 1;
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= i;j++)
{
// 定1移2 乘法:组合数学
dp[i] += dp[j - 1] * dp[i - j];// 循环遍历每一个j 以每一个j作为头节点
}
}
return dp[n];
}
};