Acwing 797. 差分

差分算法

原理

  • 如果数组A是数组B的前缀和,那么数组B就是数组A的差分数组
  • 比如,将一个数组的一段区间[l,r]中间的每一个数字都加上c 可能执行n次,如果多次执行该操作,每次都是On的时间复杂度,但是如果对该数组的差分数组进行该操作,然后再求前缀和,还原该数组,大大降低时间复杂度。

参考他的文章,写的很清楚:https://zhuanlan.zhihu.com/p/344718960

题目:Acwing 797. 差分

在这里插入图片描述

模板代码

#include<iostream>
using namespace std;

const int N = 1e5 + 10;
int n,m;
int a[N],b[N];

void insert(int l,int r,int c)
{
    b[l] += c;
    b[r + 1] -= c;
}

int main()
{
    scanf("%d%d",&n,&m);
    
    for(int i = 1; i <= n; i++)
    {
        scanf("%d",&a[i]);
        
    }
    
    for(int i = 1; i <= n; i++)
    {
        insert(i,i,a[i]);// 将原数组的n个数插入  构造a的差分数组
    }
    
    // 对差分数组进行操作
    while(m--)
    {
        int l,r,c;
        scanf("%d%d%d",&l,&r,&c);
        insert(l,r,c);
    }
    
    // 计算前缀和  还原数组
    for(int i = 1; i <= n; i++)
    {
        b[i] += b[i - 1];
    }
    
    for(int i = 1; i <=n; i++)
    {
        printf("%d ",b[i]);
    }
    
    return 0;
}


题目链接:https://www.acwing.com/problem/content/4948/ 题目描述: 给定一棵有 $n$ 个结点的树,结点从 $1$ 到 $n$ 编号,每个结点都有一个权值 $w_i$,现在有 $m$ 次操作,每次操作是将树中编号为 $x$ 的结点的权值加上 $y$,然后询问一些节点是否为叶子节点,如果是输出 $1$,否则输出 $0$。 输入格式: 第一行包含两个整数 $n$ 和 $m$。 第二行包含 $n$ 个整数,其中第 $i$ 个整数表示结点 $i$ 的初始权值 $w_i$。 接下来 $n-1$ 行,每行包含两个整数 $a$ 和 $b$,表示点 $a$ 和点 $b$ 之间有一条无向边。 接下来 $m$ 行,每行描述一次操作,格式为三个整数 $t,x,y$。其中 $t$ 表示操作类型,$t=1$ 时表示将编号为 $x$ 的结点的权值加上 $y$,$t=2$ 时表示询问编号为 $x$ 的结点是否为叶子节点。 输出格式: 对于每个操作 $t=2$,输出一个结果,表示询问的结点是否为叶子节点。 数据范围: $1≤n,m≤10^5$, $1≤w_i,y≤10^9$ 样例: 输入: 5 5 1 2 3 4 5 1 2 1 3 3 4 3 5 2 3 0 1 3 100 2 3 0 1 1 100 2 3 0 输出: 1 0 0 算法1: 暴力dfs,每次都重新遍历整棵树,时间复杂度 $O(nm)$ 时间复杂度: 最坏情况下,每次操作都要遍历整棵树,时间复杂度 $O(nm)$,无法通过此题。 算法2: 用一个 vector<int> sons[n+5] 来存储每个点的所有子节点,这样可以用 $O(n)$ 预处理出每个点的度数 $deg_i$,如果 $deg_i=0$,则 $i$ 是叶子节点,否则不是。 对于每个操作,只需要更新叶子节点关系的变化就可以了。如果某个节点的度数从 $1$ 变成 $0$,则该节点变成了叶子节点;如果某个节点的度数从 $0$ 变成 $1$,则该节点不再是叶子节点。 时间复杂度: 每次操作的时间复杂度是 $O(1)$,总时间复杂度 $O(m)$,可以通过此题。 C++ 代码: (算法2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少写代码少看论文多多睡觉

求打赏,求关注,求点赞

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值