试题6 递增三元组
题目内容
给定三个整数数组
A = [A1, A2, … AN],
B = [B1, B2, … BN],
C = [C1, C2, … CN],
请你统计有多少个三元组(i, j, k) 满足:
- 1 <= i, j, k <= N
- Ai < Bj < Ck
输入格式
第一行包含一个整数N。
第二行包含N个整数A1, A2, … AN。
第三行包含N个整数B1, B2, … BN。
第四行包含N个整数C1, C2, … CN。
对于30%的数据,1 <= N <= 100
对于60%的数据,1 <= N <= 1000
对于100%的数据,1 <= N <= 100000 0 <= Ai, Bi, Ci <= 100000
输出格式
一个整数表示答案
样例输入
3
1 1 1
2 2 2
3 3 3
样例输出
27
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include < xxx >
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
解题思路:
首先要明白题目的意思,给你三个数组,问你从这三个数组中各取一个数 a,b,c,取出的三个数满足 a < b < c 条件,问有多少种这样的三个数。
简单的分析,鉴于蓝桥杯有着暴力杯的美誉,我很快乐的不假思索的想了下,开始了两层for循环+二分查找。嗯…结果很明显炸了。
错误代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
int num1[100005];
int num2[100005];
int num3[100005];
int main(int argc, char** argv) {
int n;
cin>>n;
for(int i=0;i<n;i++)
scanf("%d",&num1[i]);
for(int i=0;i<n;i++)
scanf("%d",&num2[i]);
for(int i=0;i<n;i++)
scanf("%d",&num3[i]);
sort(num1,num1+n);
sort(num2,num2+n);
sort(num3,num3+n);
long long sum = 0;
for(int i=0;i<n;i++) {
if(num1[i] < num2[n-1]) {
int begin = upper_bound(num2, num2+n, num1[i])-num2;
for(int j=begin;j<n;j++) {
if(num1[i] < num2[j]) {
int id = upper_bound(num3, num3+n, num2[j])-num3;
sum += n-id;
}
}
}
else {
break;
}
}
cout<<sum<<endl;
return 0;
}
很快,我发现了我的错误。
其实可以从第二个数组中选一个中间的数,然后通过中间的数去找第一个数组中比他小的数的个数;再然后通过中间的数去找第三个数组中比他大的数的个数。
将两个数相乘就是中间这个数固定后的所有的可能性。
接下来只需要一个 for 循环,遍历第二个数组,将值加起来,就是答案了。
正确代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
int num1[100005];
int num2[100005];
int num3[100005];
int main(int argc, char** argv) {
int n;
cin>>n;
for(int i=0;i<n;i++)
scanf("%d",&num1[i]);
for(int i=0;i<n;i++)
scanf("%d",&num2[i]);
for(int i=0;i<n;i++)
scanf("%d",&num3[i]);
sort(num1,num1+n);
sort(num2,num2+n);
sort(num3,num3+n);
long long sum = 0;
for(int i=0;i<n;i++) {
long long idA = lower_bound(num1, num1+n, num2[i])-num1;
long long idB = n-(upper_bound(num3, num3+n, num2[i])-num3);
sum += idA*idB;
}
cout<<sum<<endl;
return 0;
}
可能有人不懂的 lower_bound() 函数和 upper_bound() 函数,这是C++中头文件 #include< algorithm > 的二分法实现的算法函数。
upper_bound(num, num+n, a):表示数组num在[0, n)的区间内,返回第一个大于a的元素的迭代器
lower_bound(num, num+n, a):表示数组num在[0, n)的区间内,返回第一个大于或等于a的元素的迭代器