【概率期望】国家集训队

题目描述

gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案。试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,…,ai,每个选项成为正确答案的概率都是相等的。lc采取的策略是每道题目随机写上1-ai的某个数作为答案选项,他用不了多少时间就能期望做对\sum_{i=1}^n \frac{1}{a_i}∑i=1n​ai​1​道题目。gx则是认认真真地做完了这n道题目,可是等他做完的时候时间也所剩无几了,于是他匆忙地把答案抄到答题纸上,没想到抄错位了:第i道题目的答案抄到了答题纸上的第i+1道题目的位置上,特别地,第n道题目的答案抄到了第1道题目的位置上。现在gx已经走出考场没法改了,不过他还是想知道自己期望能做对几道题目,这样他就知道会不会被lc鄙视了。

我们假设gx没有做错任何题目,只是答案抄错位置了。

输入格式

n很大,为了避免读入耗时太多,输入文件只有5个整数参数n, A, B, C, a1,由上交的程序产生数列a。下面给出pascal/C/C++的读入语句和产生序列的语句(默认从标准输入读入):

// for pascal
readln(n,A,B,C,q[1]);
for i:=2 to n do
q[i] := (int64(q[i-1]) * A + B) mod 100000001;
for i:=1 to n do
q[i] := q[i] mod C + 1;


// for C/C++
scanf("%d%d%d%d%d",&n,&A,&B,&C,a+1);
for (int i=2;i<=n;i++)
a[i] = ((long long)a[i-1] * A + B) % 100000001;
for (int i=1;i<=n;i++)
a[i] = a[i] % C + 1;

选手可以通过以上的程序语句得到n和数列a(a的元素类型是32位整数),n和a的含义见题目描述。

输出格式

输出一个实数,表示gx期望做对的题目个数,保留三位小数。

输入输出样例

输入 #1复制

3 2 0 4 1

输出 #1复制

1.167

说明/提示

【样例说明】

正确答案   |   gx的答案    | 做对题目| 出现概率
{1,1,1}    |    {1,1,1}    |    3    |    1/6
{1,2,1}    |    {1,1,2}    |    1    |    1/6
{1,3,1}    |    {1,1,3}    |    1    |    1/6
{2,1,1}    |    {1,2,1}    |    1    |    1/6
{2,2,1}    |    {1,2,2}    |    1    |    1/6
{2,3,1}    |    {1,2,3}    |    0    |    1/6

a[] = {2,3,1}

共有6种情况,每种情况出现的概率是1/6,gx期望做对(3+1+1+1+1+0)/6 = 7/6题。(相比之下,lc随机就能期望做对11/6题)

对于30%的数据 n≤10, C≤10

对于80%的数据 n≤10000, C≤10

对于90%的数据 n≤500000, C≤100000000

对于100%的数据 2≤n≤10000000, 0≤A,B,C,a1≤100000000

思路:

当ai>=ai+1时,正确答案落在两者重叠区域的概率为(ai+1)/ai,在重叠部分找出正确答案的概率为1/(ai+1),x相乘即得1/ai;

当ai<ai+1时,正确答案落在两者重叠区域的概率为ai/(ai+1),在重叠部分找出正确答案的概率为1/ai,x相乘即得1/(ai+1);

两种情况结合来看即某一题正确的概率为1/max(ai,ai+1)

所有题概率*1相加记得答案

 

 

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=1e7+10;
ll a[maxn];
int main()
{
    ll n,A,B,C;
    scanf("%lld %lld %lld %lld %lld",&n,&A,&B,&C,&a[1]);
    for (int i=2;i<=n;i++)
        a[i] = ((long long)a[i-1] * A + B) % 100000001;
    for (int i=1;i<=n;i++)
        a[i] = a[i] % C + 1;
    double ans=1.0/(1.0*max(a[1],a[n]));
    for(int i = 1; i < n; i++)
        ans+=1.0/(1.0*max(a[i+1],a[i]));
    printf("%.3f\n",ans);

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值