62. 不同路径
一个机器人位于一个
m x n
网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 7 输出:28示例 2:
输入:m = 3, n = 2 输出:3 解释: 从左上角开始,总共有 3 条路径可以到达右下角。 1. 向右 -> 向下 -> 向下 2. 向下 -> 向下 -> 向右 3. 向下 -> 向右 -> 向下示例 3:
输入:m = 7, n = 3 输出:28示例 4:
输入:m = 3, n = 3 输出:6提示:
1 <= m, n <= 100
- 题目数据保证答案小于等于
2 * 109
class Solution(object):
def uniquePaths(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
1.确定dp数组含义: dp[i][j]代表在第i行j列时的路径数目为dp[i][j]
2.确定递推公式: dp[i][j] = dp[i-1][j] + dp[i][j-1]
3.dp数组如何初始化: 只能从上/左推,所以第一行dp[0][j]和第一列dp[i][0]要被初始化
4.确定遍历顺序: 从左往右,从上往下
5.打印dp数组: debug
time: O(m*n)
space: O(m*n)
"""
# 初始化 DP 数组
dp = [[0] * n for _ in range(m)]
# 设置第一行和第一列的基本情况
for i in range(m):
dp[i][0] = 1
for j in range(n):
dp[0][j] = 1
# 动态规划计算
for i in range(1, m):
for j in range(1, n):
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
# 返回右下角单元格的唯一路径数
return dp[-1][-1] # 返回右下角的值,即所有可能的路径数量
63. 不同路径 II
一个机器人位于一个
m x n
网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用
1
和0
来表示。示例 1:
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]] 输出:2 解释:3x3 网格的正中间有一个障碍物。 从左上角到右下角一共有2
条不同的路径: 1. 向右 -> 向右 -> 向下 -> 向下 2. 向下 -> 向下 -> 向右 -> 向右示例 2:
输入:obstacleGrid = [[0,1],[0,0]] 输出:1提示:
m == obstacleGrid.length
n == obstacleGrid[i].length
1 <= m, n <= 100
obstacleGrid[i][j]
为0
或1
class Solution(object):
def uniquePathsWithObstacles(self, obstacleGrid):
"""
:type obstacleGrid: List[List[int]]
:rtype: int
1.确定dp数组含义: dp[i][j]代表在第i行j列时的路径数目为dp[i][j]
2.确定递推公式: dp[i][j] = dp[i-1][j] + dp[i][j-1]
3.dp数组如何初始化: 只能从上/左推,所以第一行dp[0][j]和第一列dp[i][0]要被初始化
4.确定遍历顺序: 从左往右,从上往下
5.打印dp数组: debug
time: O(m*n)
space: time: O(m*n)
"""
# coner case
if obstacleGrid[0][0] == 1 or obstacleGrid[-1][-1] == 1:
return 0
# 初始化 DP 数组
m = len(obstacleGrid)
n = len(obstacleGrid[0])
dp = [[0]*n for _ in range(m)]
dp[0][0] = 1
# 设置第一行和第一列的基本情况
for i in range(1, m):
if obstacleGrid[i][0] == 1:
dp[i][0] = 0
else:
dp[i][0] = dp[i-1][0]
for j in range(1, n):
if obstacleGrid[0][j] == 1:
dp[0][j] = 0
else:
dp[0][j] = dp[0][j-1]
# 填充其他的 dp 值
for i in range(1,n):
for j in range(1,m):
if obstacleGrid[i][j] == 1:
dp[i][j] = 0
else:
dp[i][j] = dp[i-1][j] + dp[i][j-1]
return dp[-1][-1]