计算 KL距离 (相对熵)

KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(RelativeEntropy)。它衡量的是相同事件空间里的两个概率分布的差异情况。其物理意义是:在相同事件空间里,概率分布P(x)的事件空间,若用概率分布Q(x)编码时,平均每个基本事件(符号)编码长度增加了多少比特。

计算公式推导详情

我们用D(P||Q)表示KL距离,计算公式如下:

计算公式A

当两个概率分布完全相同时,即P(x)=Q(X),其相对熵为0 。我们知道,概率分布P(X)的信息熵为:

计算公式B

其表示,概率分布P(x)编码时,平均每个基本事件(符号)至少需要多少比特编码。通过信息熵的学习,我们知道不存在其他比按照本身概率分布更好的编码方式了,所以D(P||Q)始终大于等于0的。虽然KL被称为距离,但是其不满足距离定义的三个条件:1)非负性;2)对称性(不满足);3)三角不等式(不满足)。

我们以一个例子来说明,KL距离的含义。

假如一个字符发射器,随机发出0和1两种字符,真实发出概率分布为A,但实际不知道A的具体分布。现在通过观察,得到概率分布B与C。各个分布的具体情况如下:

A(0)=1/2,A(1)=1/2

B(0)=1/4,B(1)=3/4

C(0)=1/8,C(1)=7/8

那么,我们可以计算出得到如下:
样例计算结果

也即,这两种方式来进行编码,其结果都使得平均编码长度增加了。我们也可以看出,按照概率分布B进行编码,要比按照C进行编码,平均每个符号增加的比特数目少。从分布上也可以看出,实际上B要比C更接近实际分布。

如果实际分布为C,而我们用A分布来编码这个字符发射器的每个字符,那么同样我们可以得到如下:

样例计算结果B

再次,我们进一步验证了这样的结论:对一个信息源编码,按照其本身的概率分布进行编码,每个字符的平均比特数目最少。这就是信息熵的概念,衡量了信息源本身的不确定性。另外,可以看出KL距离不满足对称性,即D(P||Q)不一定等于D(Q||P)。

当然,我们也可以验证KL距离不满足三角不等式条件。

上面的三个概率分布,D(B||C)=1/4log2+3/4log(6/7)。可以得到:D(A||C) - (D(A||B)+ D(B||C)) =1/2log2+1/4log(7/6)>0,这里验证了KL距离不满足三角不等式条件。所以KL距离,并不是一种距离度量方式,虽然它有这样的学名。

其实,KL距离在信息检索领域,以及统计自然语言方面有重要的运用。


有个博主的理解

https://blog.csdn.net/qtlyx/article/details/51834684

KL散度又是一个从信息论、熵的角度考量距离的一个量。但是,这里说他是距离有点不妥,因为距离需要满足4个条件:

  1. d(x,x) = 0 反身性
  2. d(x,y) >= 0 非负性
  3. d(x,y) = d(y,x) 对称性
  4. d(x,k)+ d(k,y) >= d(x,y) 三角形法则

但是,很遗憾,我们的KL散度至满足前面两条,后面介绍的对称KL也只能满足前面三条。所以,我们叫KL散度,而不是叫KL距离。

如何直观的理解这样的一个度量的量呢。我不说什么用A的概率去编码B之类的,直观的去看KL散度的公式,说白了,P(x)部分可以认为是权重,其值就是P取该值的概率,后面的则是两者出现该变量的概率之比,然后取对数。取对数当然就是因为信息熵啦。也就是说,如果某一个变量出现的概率在P中很小,那么权重很小,即使在Q中很大,使得后半部分值比较大,那么最后值也不会很大;反过来也一样。所以,希望KL散度大,那么就需要有大的权重和大的概率差异,也就是,两个分布要不一样。

对称KL就是KL(P,Q)与KL(Q,P)的值加起来之后取平均。


python代码

import numpy as np
from scipy import *
def asymmetricKL(P,Q):
    return sum(P * log(P / Q)) #calculate the kl divergence between P and Q
 
def symmetricalKL(P,Q):
    return (asymmetricKL(P,Q)+asymmetricKL(Q,P))/2.00

https://blog.csdn.net/hfut_jf/article/details/71403741?tdsourcetag=s_pcqq_aiomsg

转载自hfut_jf

大佬的解释

import numpy as np
import scipy.stats

# 随机生成两个离散型分布
x = [np.random.randint(1, 11) for i in range(10)]
print(x)
print(np.sum(x))
px = x / np.sum(x)
print(px)
y = [np.random.randint(1, 11) for i in range(10)]
print(y)
print(np.sum(y))
py = y / np.sum(y)
print(py)

# 利用scipy API进行计算
# scipy计算函数可以处理非归一化情况,因此这里使用
# scipy.stats.entropy(x, y)或scipy.stats.entropy(px, py)均可
KL = scipy.stats.entropy(x, y) 
print(KL)

# 编程实现
KL = 0.0
for i in range(10):
    KL += px[i] * np.log(px[i] / py[i])
    # print(str(px[i]) + ' ' + str(py[i]) + ' ' + str(px[i] * np.log(px[i] / py[i])))

print(KL)
  • 5
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值