安装依赖
- 安装好需要的环境 nvidia docker
- 安装好 nvidia docker 的 cuda
下载镜像
-
同时安装Open WebUI和Ollama
-
仅CPU,使用此命令:
docker run -d -p 3000:8080 -v ollama:/root/.ollama -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:ollama
GPU版本,使用GPU加速
- 在Nvidia GPU支持下运行Ollama,请使用Nvidia-docker工具进行GPU访问,并为CUDA支持设置适当的环境变量::
docker run -d -p 8080:8080 --gpus=all -v ollama:/root/.ollama -v open-webui:/app/backend/data --name open-webui-gpu --restart always ghcr.io/open-webui/open-webui:ollama
备注
- –name open-webui 表示该镜像的名称为 open-webui
- -p 8080:8080 其中的8080是后面打开网页的端口号
- 如果之前安装了 CPU 版本的open-webui, 那么,在安装GPU版本的时候要注意改一下gpu版本的名称(–name open-webui-gpu)
- –volume open-webui:/app/backend/data 表示将本地的 open-webui 文件夹挂载到容器中,这样容器中的数据就保存到这个目录中的
安装模型
- llama3:8b-instruct-fp16
- llama3
可能会遇到无法安装模型的问题,只能安装litellm
- 解决方法是移除相关镜像,然后重新拉去和安装镜像
- 采用新命令安装gpu版本(猜测可能是没有安装ollama的原因)
docker run -d -p 8080:8080 --gpus=all -v ollama:/root/.ollama -v open-webui:/app/backend/data --name open-webui-gpu --restart always ghcr.io/open-webui/open-webui:ollama
可能会出现还保留有之前镜像注册的账户,这个时候需要删除之前镜像的挂载目录
- 1、删除容器:先确保停止并删除相关容器,包括任何可能使用这些卷的容器。
docker stop open-webui
docker rm open-webui
- 2、删除卷:删除卷,包括任何可能使用这些卷的容器。
docker volume rm ollama open-webui
- 3、清理未使用的卷:如果不确定卷的名称,可以查看所有卷并删除未使用的卷。
docker volume prune
- 4、重新启动容器:由于相关卷已被删除,任何之前的用户数据和设置都不会被加载。