文章目录 前言一、模型1.线性模型2.非线性模型 二、损失函数1.0-1损失函数2.平方损失函数3.交叉熵损失函数4.Hinge损失函数 三.优化算法1.参数与超参数2.(批量)梯度下降法3.提前停止![](https://i-blog.csdnimg.cn/blog_migrate/40512aef8fe0aafe79ffec3ac8800d6d.png)4.随机梯度下降法5.小批量梯度下降法 前言 例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。 一、模型 1.线性模型 2.非线性模型 二、损失函数 1.0-1损失函数 2.平方损失函数 3.交叉熵损失函数 4.Hinge损失函数 三.优化算法 1.参数与超参数 2.(批量)梯度下降法 3.提前停止 4.随机梯度下降法 5.小批量梯度下降法