前言
例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。
一、评价指标
为了衡量一个机器学习模型的好坏,需要给定一个测试集,用模型对测试集中的每一个样本进行预测,并根据预测结果计算评价分数.
二、准确率和错误率
1.准确率
其中𝐼(⋅)为指示函数.
2.错误率
三、精确率与召回率
四、宏平均和微平均
为了计算分类算法在所有类别上的总体精确率、召回率和 F1值,经常使用两种平均方法,分别称为宏平均(Macro Average)和微平均(Micro Average)[Yang, 1999].
微平均是每一个样本的性能指标的算术平均值.对于单个样本而言,它的精确率和召回率是相同的(要么都是1,要么都是0).因此精确率的微平均和召回率的微平均是相同的.同理,F1值的微平均指标是相同的.当不同类别的样本数量不均衡时,使用宏平均会比微平均更合理些.宏平均会更关注小类别上的评价指标