神经网络与深度学习学习笔记5


前言

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。


一、评价指标

为了衡量一个机器学习模型的好坏,需要给定一个测试集,用模型对测试集中的每一个样本进行预测,并根据预测结果计算评价分数.

二、准确率和错误率

1.准确率

在这里插入图片描述
其中𝐼(⋅)为指示函数.

2.错误率

在这里插入图片描述

三、精确率与召回率

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、宏平均和微平均

为了计算分类算法在所有类别上的总体精确率、召回率和 F1值,经常使用两种平均方法,分别称为宏平均(Macro Average)和微平均(Micro Average)[Yang, 1999].
在这里插入图片描述
微平均是每一个样本的性能指标的算术平均值.对于单个样本而言,它的精确率和召回率是相同的(要么都是1,要么都是0).因此精确率的微平均和召回率的微平均是相同的.同理,F1值的微平均指标是相同的.当不同类别的样本数量不均衡时,使用宏平均会比微平均更合理些.宏平均会更关注小类别上的评价指标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值