给你一个整数数组 nums ,和一个表示限制的整数 limit,请你返回最长连续子数组的长度,该子数组中的任意两个元素之间的绝对差必须小于或者等于 limit 。
如果不存在满足条件的子数组,则返回 0 。
示例 1:
输入:nums = [8,2,4,7], limit = 4
输出:2
解释:所有子数组如下:
[8] 最大绝对差 |8-8| = 0 <= 4.
[8,2] 最大绝对差 |8-2| = 6 > 4.
[8,2,4] 最大绝对差 |8-2| = 6 > 4.
[8,2,4,7] 最大绝对差 |8-2| = 6 > 4.
[2] 最大绝对差 |2-2| = 0 <= 4.
[2,4] 最大绝对差 |2-4| = 2 <= 4.
[2,4,7] 最大绝对差 |2-7| = 5 > 4.
[4] 最大绝对差 |4-4| = 0 <= 4.
[4,7] 最大绝对差 |4-7| = 3 <= 4.
[7] 最大绝对差 |7-7| = 0 <= 4.
因此,满足题意的最长子数组的长度为 2 。
示例 2:
输入:nums = [10,1,2,4,7,2], limit = 5
输出:4
解释:满足题意的最长子数组是 [2,4,7,2],其最大绝对差 |2-7| = 5 <= 5 。
示例 3:
输入:nums = [4,2,2,2,4,4,2,2], limit = 0
输出:3
提示:
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^9
0 <= limit <= 10^9
题解:
数据范围 10^5,只能是 O(n) / O(n logn) 级别的算法。
求符合要求的子数组,可以用 O(n) 的滑动窗口算法。
关键在于,如何记录窗口内的最大绝对差值。
Leetcode 239.滑动窗口最大值
做过239题的前提下,我们了解到可以通过维护一个单调队列,记录窗口内的最大/最小值。
这题是239题的plus版本,需要两个单调队列分别维护最大,最小值。
遍历子数组的右边界时,维护单调队列。判断 max - min <= limit 找到子数组左边界。记录最大结果。
代码如下:
class Solution {
public int longestSubarray(int[] nums, int limit) {
int n = nums.length;
int ret = 1;
Deque<Integer> q1 = new ArrayDeque<>();
Deque<Integer> q2 = new ArrayDeque<>();
int l = 0;
//移动子数组右边界
for(int r = 0; r < n; r++){
int iv = nums[r];
//维护单调队列
while(!q1.isEmpty() && q1.peekLast() < iv) q1.pollLast();
while(!q2.isEmpty() && q2.peekLast() > iv) q2.pollLast();
q1.offer(iv);
q2.offer(iv);
//根据题目给出条件找到子数组左边界
while(!q1.isEmpty() && !q2.isEmpty() && q1.peekFirst() - q2.peekFirst() > limit){
int lv = nums[l++];
if(q1.peekFirst() == lv) q1.pollFirst();
if(q2.peekFirst() == lv) q2.pollFirst();
}
ret = Math.max(ret,r - l + 1);
}
return ret;
}
}