简明人工智能2-6章

第二章、知识表示

在这里插入图片描述

P22-P23

1、真假性与相对性 推理证明只是真假,非相对性
2、不确定性:不完备性,不精确性、模糊性。
3、矛盾性和相容性
4、可表示性与可利用性

1、只是表示方法研究各种数据结构的设计,通过这种数据结构把问题领域的各种知识结合到计算机系统的程序设计中。状态空间表示法、问题规约表示法、谓词逻辑表示法、语音网络表示法、框架表示法、剧本表示法、过程表示法。

在这里插入图片描述

P23-24

状态空间表示法是以状态和算符为基础来表示问题和求解问题的,四要素:
1、状态:表示问题求解过程中每一步问题状况的数据结构。一组变量或数组
2、算符:把问题从一种状态变换为另一种状态的手段。通常算符用来表示引起状态变化的过程型知识的一组关系或函数
3、状态空间:利用状态变量和算符表示系统或问题的有关知识的符号体系,四元组
4、问题的解:状态空间的一个解是一个有限的操作算子序列,它使初始状态转换为目标状态。不唯一

在这里插入图片描述

P26、28

问题归约的实质:从目标(要解决的问题)出发逆向推理,建立子问题以及子问题的子问题,直至最后把初始问题规约为一个平凡的本原问题集合。
三圆盘
1、用三元组(i,j,k)表示问题在任一时刻的状态,其中i,j,k代表大,中,小盘所在的柱号,(1,1,1)—>(3,3,3)
2、归约方法。原始问题分解
3、画归约图,得到解

在这里插入图片描述

P33

步骤:
1、定义谓词、函数及个体,确定确切含义
2、根据所要表达的事物或概念,为每个谓词中的变元赋予特定的值
3、根据所要表达的知识的语义,用适当的连接符号将各个谓词连接起来,形成谓词公式

在这里插入图片描述
步骤在p40
特点:
1、结构性,语义网络把事物的属性以及物体间的各种语义联系显式地表示出来,是一种结构化的知识表示方法
2、联想性,语义网络本来是作为人类联想记忆模型提出来的,它着重强调事物间的语义联系,体现了人类的联想思维过程
3、自索引性,语义网络把各节点之间的联系以明确 、间接的方式表示出来,通过与某一节点连接的弧可以找出与该节点有关的信息,而不必查找整个知识库。
4、自然性,语义网络中带有标识的有向图,可比较直观的把知识表示出来,并且与自然语言语义网络之间的转换也比较容易实现。

第三章、搜索策略

在这里插入图片描述
P47
根据在问题求解过程中是否使用启发式信息,搜索可分为盲目搜索和启发式搜索。
盲目搜索:在搜索求解过程中,只按预定的控制策略进行,在搜索过程中获得的信息并不改变控制策略。
启发式搜索:在搜索求解过程中,根据问题本身的特性或搜索过程中产生的一些信息来不断地改变或调整搜索的方向,是搜索朝着最有希望的方向前进,加速问题的求解过程并找到最优解。
在这里插入图片描述
P48
1、完备性:如果存在一个解答,该策略是否保证能够找到
2、时间复杂性:需要多长时间可以找到解答
3、空间复杂性:执行搜索需要多少存储空间
4、最优性:如果存在不同的几个解,该算法是否可以发现最高质量的解

在这里插入图片描述
P49 P51
宽度优先搜索:从初始节点S0开始,逐层的对节点进行扩展并考察它是否是目标节点,在第n层的节点没有完全拓展并考察之前,不对第n+1层的节点进行扩展。
深度优先搜索:从初始节点S0开始,在其子节点中进行考察,若不是目标节点,则再在该子节点的子节点中选择一个节点进行考察,一直如此向下搜索,当到达某个子节点后,若子节点既不是目标节点又不能继续扩展,就选择兄弟节点进行考察。

一个是首先选择接近起始节点的一层,深度是先沿着深度向下寻找,不满足条件才寻找同一层的节点,如果都没有才返回上一层。

在这里插入图片描述
P57
估价函数是一种用于估计节点重要性的函数。它通常被定义为从初始节点S0出发,约束经过节点x到达目标节点Sg的所有路径中最小路径的估价值。f(x)=g(x)+h(x)
g(x):从初始节点S0到约束节点x的实际代价
h(x):从约束节点x到目标节点Sg的最优路径的估计代价。
可以按指向父节点的指针,从约束节点x反向跟踪到初始节点S0,得到一条从S0到x的最小代价路径,然后把这条路径上的所有有向边的代价相加,就得到g(x)的值。h(x)需要根据问题的特性来确定,体现的是问题自身的启发性信息,所以被称为启发函数。
在这里插入图片描述
九宫格中,全局择优搜索启发函数定义为:f(x) = d(x) + h(x),其中d(x)表示当前节 点的深度,h(x)表示当前节点x与目标节点格局不同的牌数(差异的度量)。
A*算法是对估价函数加上一些限制后得到的一种启发式搜索算法。A算法即是A算法(全局择优搜索)的下界。A算法是在A算法的基础上,每生成一个新节点,即查找closed表,如果closed表中有相同排列的结点,那么则比较他们的权重(f(x)),如果新节点的权重更小,则替代原结点,即,刷新原结点的深度,这样就很有可能找到更短、更快的到达目标结点的路径。

在这里插入图片描述
P79

1、按逻辑基础分类

演绎推理:从已知的一般性知识出发,推理出适合于某种个别情况的结论的过程,一般到个别的推理
归纳推理:从大量特殊事例出发,归纳出一般性结论的推理过程,是一种由个别到一半的推理方法
默认推理(缺省推理):指在知识不完全的情况下假设某些条件已经具备所进行的推理。

2、按知识的确定性分类

确定性推理(精确推理):推理时所使用的知识和推出的结论都是可以精确表示的,其真值要么为真要么为假
不确定性推理(不精确推理):推理时所用的知识和推出的结论不都是完全确定的,其真值会位于真和假之间

3、按过程的单调性分类

单调推理:在推理过程中,由于新知识的加入和使用,随着推理过程的向前,所推出的结论表现为越来越接近最终目标,而不会出现反复情况,不会由于新知识的加入而否定前面推出的结论,从而使得推理过程又倒退回前面的某步
非单调推理:在推理过程中,当某些新的知识加入后,随着推理的向前推进会否定原来推出的结论,使得推理过程退回到先前某一步,重新开始
在这里插入图片描述
P82-83

在这里插入图片描述
P102
规则正向演绎系统是从事实到目标进行操作的,即从状况条件到动作进行推理,从if到then的方向进行推理
规则逆向演绎系统,其操作与正向演绎系统相反,即从目标到事实的操作过程,从then到if的推理过程
双向演绎推理P107,具有正向和逆向两系统的优点,

在这里插入图片描述
P111
不确定性可以分成两类:知识的不确定性和证据的不确定性
推理方法分类(P113-114)
分为数值方法和非数值方法

在这里插入图片描述
P143
要将自然语言表示成计算机能够理解和处理的形式,就必须建立一个定性概念与定量描述之间的不确定转换模型,云模型在概率论和模糊集合论两种理论基础上,通过特定的构造算法,同意刻画概念的随机性、模糊性及关联性。

在这里插入图片描述
缺陷:P156
新型特征: (1) 并行技术与分布处理。
(2) 多专家系统协同工作。
(3)更强的自主学习能力。
(4) 更新的推理机制。
(5) 先进的智能接口。
(6) 更多的先进技术被引入和融合。
在这里插入图片描述
P174
知识表示问题
知识获取问题
知识利用问题
在这里插入图片描述P162-163
神经网络是基于输入\输出的一种直觉性反射,适用于进行浅层次的经验推理,其特点是通过数值计算实现推理;专家系统是基于知识匹配的逻辑推理,是深层次的符号推理。将两者科学的结合形成神 经网络专家系统,可以取长补短。
(1)神经网络支持专家系统。以传统的专家系统为主,以神经网络的有关技术为辅。
(2)专家系统支持神经网络。以神经网络的有关技术为核心,建立相应领域的专家系统,采用专家系统的相关技术完成解释等方面的工作。
(3)协同式的神经网络专家系统。针对大的复杂问题,将其分解为若干子问题,针对每个子问题的特点,选择用神经网络或专家系统加以实现,在神经网络和专家系统之间建立一种耦合关系。

在这里插入图片描述

**P166:**知识获取的途径

基于神经网络的推理,把用户提供的出示证据作为网络的输入,通过网络计算得到输出结果,神经网络推理有如下特征:并行推理,同一层处理单元并行;自适应推理,参数通过学习算法对网络训练得到;不会出现冲突问题
在这里插入图片描述
P176
模糊知识库、模糊数据库、模糊推理机、模糊知识获取模块、解释模块、人机接口

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值