尺取法:PIPI的目标Ⅲ
问题:
思路:
首先对数组R进行排序,如果直接枚举a,b,c的话,时间复杂度为O(n^3),肯定会超时,那么我们接下来考虑使用尺取法来解决此题。
我们只枚举a,然后令b=a+1,即b为a的下一位,c=n。枚举过程如下:
如果此时R[a]+R[b]+R[c]==0,那么满足要求,我们输出结果,然后令b++,c- -,之后继续进行和的判断。
如果此时R[a]+R[b]+R[c]<0,那么显然我们的值小了。由于我们枚举的是a,所以此时a不能动,那么只能动b或者c,而只有动b才能让它变大,所以让b++,之后继续进行和的判断。
如果此时R[a]+R[b]+R[c]>0,那么显然我们的值大了。a不能动,那么只能动b或者c,而只有动c才能让它变小,所以让c- -,之后继续进行和的判断。
当b在c之后或b和c重叠时,则我们已经枚举完了当前a的所有情况,则a移到下一位,继续进行枚举判断过程
题目要求我们输出不重复的答案,因此我们将< a, b, c >定义为三元组TriGroup,用一个HashSet来进行去重。需要注意的是,我们必须重写TriGroup的equals方法,因为我们这里的逻辑是当三元组中a,b,c的值对应相等,则认为两个TriGroup是同一个,而默认的equals方法是通过==判断实现的。hashCode方法也要重写,因为HashSet的add方法,调用的实际上是其内置的HashMap的put方法,该方法是要使用到键的hash值的,而计算hash值就是用的hashCode方法,因此我们重写hashCode方法,使其返回a,b,c共同决定的hash值
代码:
import java.util.*;
public class Main {
static int[] array = new int[1005];
static Set<TriGroup> set = new HashSet<>();
public static void main(String[] args) {
int a, b, c, n, i, aIndex, bIndex, cIndex;
Scanner scanner = new Scanner(System.in);
while (scanner.hasNextInt()) {
set.clear();
n = scanner.nextInt();
for (i = 0; i < n; i++) {
array[i] = scanner.nextInt();
}
Arrays.sort(array, 0, n);
for (i = 0; i < n - 2; i++) {
aIndex = i;
bIndex = i + 1;
cIndex = n - 1;
a = array[aIndex];
b = array[bIndex];
c = array[cIndex];
while (bIndex < cIndex) {
if (a + b + c < 0) {
bIndex++;
b = array[bIndex];
}
if (a + b + c > 0) {
cIndex--;
c = array[cIndex];
}
if (a + b + c == 0 && cIndex > bIndex) {
TriGroup triGroup = new TriGroup(a, b, c);
if (!set.contains(triGroup)) {
set.add(triGroup);
System.out.println(a + " " + b + " " + c);
}
bIndex++;
b = array[bIndex];
cIndex--;
c = array[cIndex];
}
}
}
}
}
}
class TriGroup {
public int a;
public int b;
public int c;
public TriGroup(int a, int b, int c) {
this.a = a;
this.b = b;
this.c = c;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
TriGroup triGroup = (TriGroup) o;
return a == triGroup.a && b == triGroup.b && c == triGroup.c;
}
@Override
public int hashCode() {
return Objects.hash(a, b, c);
}
}