文献阅读报告《基于差分量化局部二值模式的人脸反欺诈算法研究》
本文为《基于差分量化局部二值模式的人脸反欺诈算法研究》文献阅读笔记

内容大多参考网上资料,仅作为本人学习笔记使用,因为大部分概念我都是第一次接触,只是凭着大概理解写下本文,错误不可避免。欢迎指出交流讨论。本文为《基于差分量化局部二值模式的人脸反欺诈算法研究》文献阅读报告,是为了完成作业去阅读的,还要进行总结汇报答辩,所以原文中有些概念流程我没看懂的就被我删了或者改了,此博客只用于个人学习总结,不具备参考价值,文中有错误在所难免,不需要怀疑你原有的知识正确性,要错应该就是我错。再次感谢原文作者的宝贵资料(文献)。借鉴的博客在文中都有提到,感谢各位大佬!
文献网盘资源 提取码1111
文献CSDN链接
背景
人脸识别技术在生活中应用十分广范,但当有人伪造客户人脸并试图通过人脸识别系统的验证时就会出现欺诈攻击。
人脸欺诈攻击一般可分为3种方式:打印攻击、重放攻击和3D模型攻击。
打印攻击
打印攻击也称为照片攻击,是指将合法用户的照片打印出来或呈现在电子设备屏幕上,然后显示在人脸识别系统的镜头前,或是攻击者将用户人脸照片的眼部区域剪裁后放在自己的面部模拟用户眨眼来响应系统指令。
重放攻击
重放攻击也指视频攻击,是指在人脸识别系统的镜头前重复播放录制好的用户脸部视频以试图通过系统验证。
3D模型攻击
3D模型攻击是指利用特殊材料构造3D模型来模拟用户头部,当欺诈检测系统提示用户做出相应动作时,攻击者用手左右转动模型来模拟用户的头部运动。
打印攻击和重放攻击相对于3D模型攻击所用的欺诈材料易获取,欺诈样本的制作也更为简单,因此前两者欺诈方式在人脸识别系统中存在的风险系数较高,针对打印攻击和视频攻击提出的反欺诈方法也比较广泛。
目前,大部分基于脸部识别的反欺诈操作都需要人机交互。例如,用户需要眨眼完成支付宝的身份信息验证等。而交互过程极大降低了客户体验的满意程度。
文献提出用差分量化局部二值模式算法和空间金字塔算法结合的方法实现对人脸反欺诈算法性能的提升。
算法流程
1.预处理—脸部提取
首先在视频中获取一帧人脸图像,因为适当的背景信息能够帮助欺诈检测系统有效地鉴别真脸和假脸,所以检测到的人脸区域扩充到原来的1.5倍后再进行剪裁。为了避免图片标准化后使得纹理信息丢失,文献中未对剪裁后的人脸图片进行任何处理,并用空间金字塔算法解决图片多尺度问题。
2. 颜色空间转换
HSV颜色空间
来自此博客
色调 H
用角度度量,取值范围为0°~360°,从红色开始按逆时针方向计算,红色为0°,绿色为120°,蓝色为240°。它们的补色是:黄色为60°,青色为180°,品红为300°;
饱和度 S
饱和度S表示颜色接近光谱色的程度。一种颜色,可以看成是某种光谱色与白色混合的结果。其中光谱色所占的比例愈大,颜色接近光谱