07 数组和列表
"""
5.1 概述:
数组与列表类似,是具有相同数据类型的多个元素构成的整体。
主要区别:
1. 数组元素要求是相同类型,而列表的元素可以是不同类型
2. 数组可以与标量进行运算,数组之间也可以进行矢量运算。(对应位置的元素进行运算, 无需进行循环操作)
3. 数组在运算时具备广播能力。(可以根据需要进行元素的扩展,完成运算)
4. 数组的底层使用 C 中的数组存储方式(紧凑存储,节省内存空间)
5.2 应用对比:
1. 将两个等长的列表(数组)分别进行数学运算(例如:+、-)
2. 将一个列表(数组)中的所有元素进行相同的改变。
3. 对步骤二进行计时,衡量时间消耗(练习)
4. 创建相同大小的列表(数组),衡量内存消耗。(练习)
5.3 Numpy 的矢量化运算
1. ndarray 数组具有广播能力
2. 数组与标量运算,实现的广播。
3. 数组可以与标量执行运行。(实际上会扩散到数组中的每个元素与该标量执行运算)
"""
import numpy as np
# 班级中的每个学生的年龄,如果是列表,则需要进行循环的操作
li = [13, 14, 15, 16]
for i in range(len(li)):
li[i] += 1
print(li)
# 矢量化运算, 广播机制
na1 = np.array([1, 2, 3, 4, 5, 6])
na2 = na1 + 2
print(na1, na2)
# 对列表执行运算,需要使用循环
li1 = [1, 2, 3]
li2 = [4, 5, 6]
li3 = []
for x, y in zip(li1, li2):
li3.append(x + y)
print(li3)
# 数组之间也可进行矢量化运算(此时就是数组中对应的元素执行相应的运算)
a = np.array([13, 14, 15, 16])
b = np.array([10, 20, 30, 40])
print(a + b)
# 如果是 ndarray 数组,则无需循环,直接进行矢量化运算
a = np.array([13, 14, 15, 16])
a += 1
print(a)
"""
Numpy 的广播运算
numpy 广播运算的三条规则:缺失维度的数组,将维度补充为进行运算的数组的维度。缺失的数组元素使用已有元素进行补充
规则一:补充缺失的维度(进行运算的两个数组之间的维度只能相差一个维度)
规则二:缺失元素用已有的值补充
规则三:缺失维度的数组只能有一行或者一列
"""
# 数组与数组之间实现的广播
b = np.array([10, 20, 30])
c = np.array([[1, 2, 3], [4, 5, 6]])
print(b + c)
"""
广播法则能够使通用函数有意义地处理不同相同形状的输入
广播第一法则是:如果所有的输入数组维度不都相同,一个“1”将被重复地添加在维度较小的数组上,直到所有的数组拥有一样的维度。
广播第二法则是:确定长度为1的数组,沿着特殊的方向表现地好像它有沿着那个方向最大形状的大小。对数组来说,沿着那个维度的
数组元素的值理应相同。
应用广播法则之后,所有数组大小必须匹配。
广播机制的作用:使得差别不是很大的两个数组也能够进行运算。前提是使维度较低的数组扩充到和较大数组一样的维度。
思考:为什么数组会比列表要快,而且快很多呢?
相同数据大小的 array 运算,直接作用到元素级上这一 numpy 特性!
"""