题目
Alice有N个花瓶(标号为0~ N-1)。当她收到一些花时,她会随机的选择一个瓶子A,从它开始遍历A,A+1, A+2, …, N-1号瓶子,遇到空瓶子就放一朵花进去,直到花朵放完或没有瓶子,剩下的花将被丢弃。有时,她也会清理标号从A到B的花瓶(A <= B).花瓶里的花会被丢弃。
Input
第一行一个整数T,表示数据组数。
每组数据,第一行一个整数N(1 < N < 50001) and M(1 < M < 50001). N 是花瓶个数, M 是Alice的操作次数. 接下来M行 行3个 整数. 第一个整数 K(1 or 2). 如果K=1, 后面跟两个整数 A 和 F . 表示Alice 得到了F 朵花并且把它们放入从A 的花瓶里. 如果K= 2, 后跟两个整数 A 和 B. 表示Alice 清理的花瓶标号范围(A <= B).
Output
对于每个K=1的操作,输出第一朵和最后一朵花放置的花瓶标号。如果没有任何放花的位置,输出’Can not put any one.’.对于K=2的操作,输出丢弃花的个数.
每组数据后输出一个空行.
Sample Input
2
10 5
1 3 5
2 4 5
1 1 8
2 3 6
1 8 8
10 6
1 2 5
2 3 4
1 0 8
2 2 5
1 4 4
1 2 3
Sample Output
3 7
2
1 9
4
Can not put any one.
2 6
2
0 9
4
4 5
2 3
解释
在不改变线段树基本操作的情况下,如何实现从第a个位置开始放f朵花,多余的不要?
如果可以知晓a位置以后的空瓶数,如果空瓶数少于花数,那么插入花数就当做空瓶数。当空瓶数大于花数,如果不改变线段树的基本操作,必须得知道放花的最后位置与起始位置。起始位置为a。
对于最后位置如果在线段树进行更新,必须知道具体的区间位置,如果是通过左右子树层层查改,更加费时。所以通过不断区间查询得到区间空瓶数,再二分查找到具体的最后位置后,就可以用线段树的区间更新。
由于空瓶数随区间增大必然是单调不递减的,可以用线段树维护区间空瓶数,二分查找因此可以使用。但其实区间维护有花数,二分查找递减的,应该也可以做。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define maxn 50005
using namespace std;
int n, m;
struct node {
int l, r;
int sum;
}num[maxn*4];
int lazy[maxn * 4];
void bulid(int l, int r, int ret) {
num[ret].l = l;
num[ret].r = r;
num[ret].sum = r-l+1;
lazy[ret] = -1;
if (l == r) return;
int m = (l + r) >> 1;
bulid(l, m, ret << 1);
bulid(m + 1, r, ret << 1 | 1);
}
void pushdown(int ret) {
if (lazy[ret] != -1) {
num[ret << 1].sum = (num[ret << 1].r - num[ret << 1].l + 1) * lazy[ret];
num[ret << 1|1].sum = (num[ret << 1|1].r - num[ret << 1|1].l + 1) * lazy[ret];
lazy[ret << 1] = lazy[ret << 1 | 1] = lazy[ret];
lazy[ret] = -1;
}
}
void update(int L, int R, int c, int ret) {
if (L <= num[ret].l && num[ret].r <= R) {
num[ret].sum = (num[ret].r - num[ret].l + 1) * c;
lazy[ret] = c;
return ;
}
pushdown(ret);
int m = (num[ret].l + num[ret].r) >> 1;
if (m >= L) update(L, R, c, ret << 1);
if (m < R) update(L, R, c, ret << 1 | 1);
num[ret].sum = num[ret << 1].sum + num[ret << 1 | 1].sum;
}
int query(int L, int R, int ret) {
int ans = 0;
if (L <= num[ret].l && num[ret].r <= R) {
return num[ret].sum;
}
pushdown(ret);
int m = (num[ret].l + num[ret].r) >> 1;
if (m >= L) ans += query(L, R, ret << 1);
if (m < R) ans += query(L, R, ret << 1 |1);
return ans;
}
int find(int pos, int num) {
int l = pos, r = n;
int m;
int ans;
while (l <= r) {
m = (l + r) >> 1;
if (query(pos, m, 1) >= num) {
r = m - 1;
ans = m;
}
else
l = m + 1;
}
return ans;
}
int main() {
int t, op;
int A, F, L, R, cnt;
scanf("%d", &t);
while (t--){
scanf("%d %d", &n, &m);
bulid(1, n, 1);
for (int i = 0; i < m; i++) {
scanf("%d", &op);
if (op == 1) {
scanf("%d %d", &A, &F);
A++;
cnt = query(A, n, 1);
if (cnt == 0) printf("Can not put any one.\n");
else {
L = find(A, 1);
R = find(A, min(cnt, F));
update(L, R, 0, 1);
printf("%d %d\n", L-1, R-1);
}
}
else {
scanf("%d %d", &L, &R);
L++;
R++;
printf("%d\n", R - L + 1 -query(L,R,1));
update(L, R, 1, 1);
}
}
printf("\n");
}
return 0;
}
本文介绍了一种利用线段树和二分搜索优化处理花瓶填充问题的方法。通过对线段树进行区间更新和查询,结合二分搜索确定花的放置位置,实现了高效的花瓶填充与清理操作。文章详细解析了算法流程,并提供了完整的代码实现。
593

被折叠的 条评论
为什么被折叠?



