Error: EPERM: operation not permitted(操作权限问题)

问题

npm install的时候操作不允许。(以前遇到没记录)

在这里插入图片描述

原因及解决

主要是在文件夹中打开powershell窗口是没有操作权限。
选择任意一种命令行窗口以管理员方式运行即可解决。

在这里插入图片描述

是win10系统管理员账户但没有管理员权限

每次都要手动确认权限

解决办法:

Windows+R键,打开“运行”,然后输入“gpedit.msc",就是打开组策略,这个在控制面板中也可以打开。
在组策略里找到“计算机配置”-“Windows设置”-“安全设置”-“本地策略”-“安全选项”,在“安全选项”里认真查找“用户帐户控制-以管理员模式批准运行所有管理员”这项,将这项禁用掉

在这里插入图片描述

修改权限(其他参考):

Win10添加右键打开cmd和Powershell窗口(管理员/非管理员)

在RAGFlow中安装和配置reranker模型通常涉及几个步骤: 1. **环境准备**: - 首先,确保你已经安装了Python和必要的库,如PyTorch、transformers等。可以使用pip进行安装: ``` pip install torch transformers ragflow ``` 2. **下载预训练模型**: RAGFlow通常需要一个预训练的检索模型和一个分类模型作为基础。从Hugging Face Model Hub上选择合适的模型,例如`facebook/rag-token-base`和`facebook/rag-token-classifier-base`。 ```bash wget https://huggingface.co/facebook/rag-token-base/resolve/main/config.json wget https://huggingface.co/facebook/rag-token-base/resolve/main/pytorch_model.bin wget https://huggingface.co/facebook/rag-token-classifier-base/resolve/main/config.json wget https://huggingface.co/facebook/rag-token-classifier-base/resolve/main/pytorch_model.bin ``` 3. **加载模型到RAGFlow**: 使用`RAGRetriever`和`RAGClassifier`初始化模型,然后将权重加载进来: ```python from ragflow import RAGRetriever, RAGClassifier config_retriever = json.load(open('config.json', 'r')) config_classifier = json.load(open('config_classifier.json', 'r')) retriever = RAGRetriever.from_pretrained(config_retriever) classifier = RAGClassifier.from_pretrained(config_classifier) ``` 4. **配置和整合**: 将两个模型整合到一个RAGFlow实例中,并设置相关的超参数,比如查询编码器、文档编码器以及re-ranker的阈值等。 5. **模型训练和评估**: 如果你打算微调模型,可以提供一些标注数据,通过`fit`方法进行训练。如果直接使用,就跳过此步。 ```python from ragflow.data import RagDataset from ragflow.train import train_rag # 创建数据集并训练 dataset = RagDataset(...) # 根据实际需求创建数据集 train_rag(retriever=retriever, classifier=classifier, dataset=dataset) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gxhlh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值