有效的括号
v1.0:比较憨憨,括号匹配不是直接==..
class Solution {
public:
bool isValid(string s) {
stack<int> stk;
for(auto c:s){
if(!stk.empty()&&stk.top()=='('&&c==')')
{
stk.pop();
}
else if(!stk.empty()&&stk.top()=='{'&&c=='}')
{
stk.pop();
}
else if(!stk.empty()&&stk.top()=='['&&c==']')
{
stk.pop();
}
else
{
stk.push(c);
}
}
return stk.empty();
}
};
v2.0:这样直接push要匹配的确实也挺聪明
class Solution {
public:
bool isValid(string s) {
stack<int> stk;
for(auto c:s){
if(c=='{')
{
stk.push('}');
}
else if(c=='(')
{
stk.push(')');
}
else if(c=='[')
{
stk.push(']');
}
else if(!stk.empty()&&c==stk.top())
{
stk.pop();
}
else{
return false;
}
}
return stk.empty();
}
};
删除字符串中的所有相邻重复项
1047. 删除字符串中的所有相邻重复项 - 力扣(LeetCode)
v1.0:先用一个栈来删除连续项,然后再用一个栈把顺序倒过来,再把第二个栈的数据放到string里面返回
时间空间都比较拉
class Solution {
public:
string removeDuplicates(string s) {
stack<int> stk;
for(int i = 0; i<s.size();i++)
{
if(!stk.empty()&&stk.top()==s[i]){
stk.pop();
}
else
{
stk.push(s[i]);
}
}
stack<int> stk2;
while(!stk.empty())
{
stk2.push(stk.top());
stk.pop();
}
string result;
while(!stk2.empty())
{
result.push_back(stk2.top());
stk2.pop();
}
return result;
}
};
v2.0:可以用string的reverse来倒转,这样少声明一个栈
class Solution {
public:
string removeDuplicates(string s) {
stack<int> stk;
for(int i = 0; i<s.size();i++)
{
if(!stk.empty()&&stk.top()==s[i]){
stk.pop();
}
else
{
stk.push(s[i]);
}
}
string result;
while(!stk.empty())
{
result.push_back(stk.top());
stk.pop();
}
reverse(result.begin(), result.end());
return result;
}
};
v3.0:直接用string当栈就行,避免声明新的栈,牛
class Solution {
public:
string removeDuplicates(string s) {
string result;
for(auto c:s)
{
if(result.empty()||c!=result.back())
{
result.push_back(c);
}
else
{
result.pop_back();
}
}
return result;
}
};
逆波兰表达式求值
逆波兰式(Reverse Polish Notation,RPN,或逆波兰记法),也叫后缀表达式(将运算符写在操作数之后)
(a+b)c-(a+b)/e的后缀表达式为:
(a+b)c-(a+b)/e
→((a+b)c)((a+b)/e)-
→((a+b)c)((a+b)e/)-
→(ab+c)(ab+e/)-
→ab+cab+e/-
出现原因:对计算机而言中序表达式是非常复杂的结构。相对的,逆波兰式在计算机看来却是比较简单易懂的结构。因为计算机普遍采用的内存结构是栈式结构,它执行先进后出的顺序。
新建一个表达式,如果当前字符为变量或者为数字,则压栈,如果是运算符,则将栈顶两个元素弹出作相应运算,结果再入栈,最后当表达式扫描完后,栈里的就是结果。
(a+b)c的逆波兰式为ab+c,假设计算机把ab+c按从左到右的顺序压入栈中,并且按照遇到运算符就把栈顶两个元素出栈,执行运算,得到的结果再入栈的原则来进行处理,那么ab+c的执行结果如下:
1)a入栈(0位置)
2)b入栈(1位置)
3)遇到运算符“+”,将a和b出栈,执行a+b的操作,得到结果d=a+b,再将d入栈(0位置)
4)c入栈(1位置)
5)遇到运算符“”,将d和c出栈,执行dc的操作,得到结果e,再将e入栈(0位置)
经过以上运算,计算机就可以得到(a+b)*c的运算结果e了。
v1.0:其实并不难 主要是string向整数转换:stoll不知道,这下学会了,再一个就是明明可以用char,却用的string
class Solution {
public:
stack<long long> stk;
void calculate(string calSymbol)
{
long long num1 = 0, num2 = 0;
if(!stk.empty())
{
num2 = stk.top();
stk.pop();
num1 = stk.top();
stk.pop();
}
if(calSymbol=="+")
{
stk.push(num1+num2);
}
else if(calSymbol=="-")
{
stk.push(num1-num2);
}
else if(calSymbol=="*")
{
stk.push(num1*num2);
}
else if(calSymbol=="/")
{
stk.push(num1/num2);
}
}
int evalRPN(vector<string>& tokens) {
for(auto s:tokens)
{
if(s=="+"||s=="-"||s=="*"||s=="/")
{
calculate(s);
}
else{
stk.push(stoll(s));
}
}
return stk.top();
}
};