**这是一篇代码复现,原文通过Pytorch实现,本文中使用Keras对该结构进行复现。**该论文发表在IEEE Transactions on Affective Computing,第一作者Yi Ding
摘要
高时间分辨率和不对称的空间激活是脑内情绪过程的基本特征。为了学习EEG的时间动态性和空间不对称性,以实现准确和广义的情感识别,Yi Ding等人提出了一种多尺度卷积神经网络TSception,可以从EEG中对情感进行分类。Tsception由动态时间、非对称空间和高级融合层组成,同时学习时间和信道维度的区分表示。动态时域层由多尺度1D卷积核组成,其长度与EEG的采样率相关,其学习EEG的动态时间和频率表示。非对称空间层利用情绪的非对称EEG模式,学习有区别的全局和半球表示。原文代码可在以下网址获得:https://github.com/yi-ding-cs/TSception,本文复现完整代码可在下面获得:https://github.com/ruix6/tsception
模型结构
关于模型结构的相关公式推理可以参考原文,本文不详细展开,下图是模型的具体结构:

熟悉经典深度学习模型的同学应该能一眼看出来TSception的设计灵感来自Inception模型。结合脑电信号的特点,TSception分四步实现对脑电信号的计算。
- 多尺度时域卷积:第一步通过多个尺度的时域卷积核实现对EEG信号的分解与特征提取。多尺度的优势在于可以给模型提供多个不同的感受野,这对于脑电信号这种多源的复杂信号来说是十分合理的。作为对比,我们可以看一下EEGNet的结构,如下图,EEGNet的第一个部分也是一个一维时域卷积结构,但是由于单一的感受野,在很多任务中它很容易被低频部分的噪声所干扰,所以EEGNet在ERP或者SMR这种有效信息分布在低频段的任务比较友好,但是像情绪识别的话,该网络的原始结构似乎不能发挥其全部能量(改变其时域卷积核大小似乎能有效提升其能力)。

- 不对称空间卷积层:模型的第二部分由两个尺度的卷积实现。大尺度的卷积层覆盖所有通道,小尺度的卷积层分可以分别卷积大脑左半球的通道和右半球的通道。前面提到过,不对称的空间激活(即受试者在不同的情绪状态下,大脑的左右半球的激活状态是不一样的,原文中分析了受试者的大脑激活状态,想进一步了解可以看看原文)是情绪的重要特征,所以通过小尺度的空间卷积可以进一步的抓住这些特征。

- 高级融合层:该层为了进一步的融合输入的时空特征而设计,这个和EEGNet的可分离卷积层的效果是一样的,我更愿意称之为为了减小参数量而设计的🙂,这个卷积层的出现,其实使得模型的可解释性进一步降低。

文章介绍了TSception模型,这是一种用于从EEG数据中捕捉时间动态和空间不对称性以进行情绪识别的深度学习模型。TSception由动态时间、非对称空间和高级融合层构成,学习EEG的时间动态和信道维度的区分表示。通过Keras实现了Pytorch原版模型的复现,模型结构借鉴了Inception模型,包括多尺度时域卷积、不对称空间卷积和融合层。最后,文章提到了模型的代码实现和在DEAP情绪数据集上的应用,并指出模型还有优化和调参的空间。
最低0.47元/天 解锁文章
3929

被折叠的 条评论
为什么被折叠?



