- 博客(19)
- 资源 (2)
- 收藏
- 关注
原创 TSception:从EEG中捕获时间动态和空间不对称性用于情绪识别
高时间分辨率和不对称的空间激活是脑内情绪过程的基本特征。为了学习EEG的时间动态性和空间不对称性,以实现准确和广义的情感识别,Yi Ding等人提出了一种多尺度卷积神经网络TSception,可以从EEG中对情感进行分类。Tsception由动态时间、非对称空间和高级融合层组成,同时学习时间和信道维度的区分表示。动态时域层由多尺度1D卷积核组成,其长度与EEG的采样率相关,其学习EEG的动态时间和频率表示。非对称空间层利用情绪的非对称EEG模式,学习有区别的全局和半球表示。
2023-06-19 10:39:05 1667
原创 经验模态分解与Python调用实例
经验模态分解也有许多改进的算法,例如集成经验模态分解(EEMD),该算法通过给待分解信号加入随机噪声来增强分解的稳定性和可靠性,提升信号分解的质量,下面我将使用该算法实现对于一段音频信号的分解。左边是原始信号和本征模态函数的时域图像,右边是频域图像(这里我自己写了一个函数,因为PyEMD给出的官方示例是有点子难看在身上的)。这是一个元组变量,第一个是该音频的采样率,第二个是一个(time*freq,2)形状的二维ndarray对象数据类型是int16,第二个维度代表左右声道。(用几个分量来重建也行)
2023-03-27 13:12:46 1272 3
原创 MindBigData脑电信号数据处理by小波变换(附代码)
MindBigData是公开的脑电信号数据集之一,本文会使用python语言提取其中的数据,使用小波变换进行去噪,最后使用支持向量机进行粗糙分类。因为在CSDN上尚未检索到该数据库的详细介绍和使用方法,所以本文着重介绍这些和展示相关代码。
2023-01-21 14:28:34 1719
原创 脑电图(EEG)信号去噪方法简述
脑电图作为目前研究最为广泛的认知大脑的方式之一,其无创性、便携性、廉价等优点都表明该方式具有巨大的发展空间。但是由于颅骨和头皮对于电信号的传输影响,从头皮采集的电信号往往混杂着非常多的噪声,并且有效信息又非常少,所以对于去处噪声的算法的要求非常高。本文将对EEG降噪的算法做作一些介绍。
2023-01-14 16:42:21 7825
原创 ResNet50模型识别二维化的心电信号——以MIT-BIH心律失常数据库为例
有关残差网络的基本概念可以参考我的上一篇博客,此处不做赘述,代码仅供学习使用预训练模型。我的代码里训练集的数量是1000,相比于原始的60000多的数据量小得多,测试集250张,原始数据量30000多。如果将所有的数据都转换成二维图片,大概需要60GB左右的内存,正常的笔记本估计都没办法达成这个条件,尤其训练过程中还需要读入数据。当然,这是可以解决的,但是这需要对代码进行大改,这样耗时就非常长了。
2022-09-11 22:13:51 4497
原创 基于keras的残差网络实现——以fashion mnist数据集分类为例
一般来说,越深的神经网络对于数据的特征抽取与识别会表现得更好,但同时,也会面临梯度消失或者梯度爆炸的现象。因此Kaiming He等人在论文《Deep residual Learning for Image Recognition》中提出了残差网络结构,有效的解决了网络加深后的梯度消失或者梯度爆炸现象,并且在残差网络中使用小卷积核使得模型训练的计算量大幅度减少。......
2022-06-20 18:18:20 2630 3
原创 利用生成对抗网络实现数据不平衡优化的尝试
利用生成对抗网络实现数据不平衡优化的尝试前言使用的数据集以及任务描述代码实现数据预处理生成对抗网络模型效果展示总结前言在机器学习中,我们所使用的用于分类的数据集通常每个类别的数据量是比较平均的,例如鸢尾花数据集、mnist手写数字数据集等。但是,在实际生活当中,大部分的数据都是不平衡的,即某一类的数据量远远超过其他类别。为此,衍生出了很多算法来解决这个问题,例如采样法尤以SMOTE算法出名。本篇博客会使用前一篇博客所使用到的生成对抗网络模型来生成数据量较小的类别的数据,尽管在最终的测试集的表现实在堪忧,
2022-05-23 12:01:02 2790 2
原创 生成对抗网络(GAN)与其变种(DCGAN)的实现——基于tensorflow
生成对抗网络(GAN)与其变种(DCGAN)的实现——基于tensorflow前言概念——GANGAN变种——DCGAN训练过程代码实现GANDCGAN结果展示总结前言要理解什么是生成对抗网络,先解释一下有监督学习以及无监督学习:有监督学习:基于大量带有标签的训练集与测试集的机器学习过程,比如图片分类器需要一系列图片和对应的标签(“猫”,“狗”…)。MNIST手写数字集就是一堆带有标签的训练集与测试集的数据集。无监督学习:根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题。这就是无监督学习
2021-07-06 17:03:31 955
原创 普通神经网络与卷积神经网络手写数字识别对比------基于tensorflow
普通神经网络与卷积神经网络手写数字识别对比------基于tensorflow前言数据集代码普通神经网络卷积神经网络终末前言今天上午花了几个小时的时间把电脑清理了一下,把anaconda、tensorflow-gpu等东西都重新安装了一遍,现在电脑可以用GPU来跑这些神经网络的代码了。下面开始介绍:关于神经网络和卷积神经网络的内容,我并不觉得我能比CSDN的大佬讲得更好,所以我直接跳过这方面的介绍直接展示代码并讲解,如果对相关的知识了解的不够全面可以参考一下下面的两篇博客(ps:我觉得讲的还挺好的):
2021-04-18 17:10:44 952
原创 基于循环神经网络的机器翻译(英翻中)
基于seq2seq模型的机器翻译文章目录基于seq2seq模型的机器翻译前言一、什么是seq2seq模型二、机器翻译实战1.数据集介绍和数据预处理2.搭建模型Encoder模型Decoder模型3.模型训练4.建立推断模型并整理输出建立推断模型输出整理结果展示总结前言机器翻译的起源可以追溯到上世界80年代,那时的机器翻译主要依赖于语言学的发展,分析句法、语义、语用等。后来,研究者开始将统计模型应用于机器翻译,这种方法是基于对已有的文本语料库的分析来生成翻译结果。随着深度学习的兴起,如今神经网络开
2021-01-20 19:33:35 3284 2
原创 基于CNN的象棋棋子识别
基于CNN的象棋棋子识别数据集数据集介绍数据预处理卷积神经网络什么是卷积神经网络举个例子本篇博客用到的卷积神经网络模型代码及结果展示代码结果展示数据集数据集介绍本篇博客采用的数据集是中国象棋棋子数据集,包含十种棋子分别是帅、仕、象、马、炮、车、兵、卒、将、相。每个分好类的文件夹里有719张128x128像素的图片,形状一样,但是旋转角度不同数据来源,和鲸社区开放数据集,可以点击下面链接获取中国象棋棋子数据集数据集截图如下:数据预处理卷积神经网络什么是卷积神经网络举个例子本篇博客用到的
2020-11-28 17:41:55 5894 1
原创 三十行代码教你做个通用文字识别程序
三十行代码教你做个通用文字识别程序准备开始编程测试准备在开始敲代码前,我们先做一些准备。我们的这个通用文字识别程序的原理很简单,就是通过API调用百度智能云提供的免费的通用文字识别(标准版)。如果你没有相关账号的话,下面是教你怎么注册,如果有,请忽略:首先访问AI Studio并注册相关账号然后点击菜单栏的“更多”——“文档”:接下来点击右上角的“控制台”:左边的菜单来有“文字识别”,点击:我这里已经创建了应用,如果没有的话,是会显示已建应用0个,接下来就是创建应用:选择个人就好
2020-10-30 16:16:28 2613 1
原创 机器学习——随机森林及python实现
机器学习——随机森林及python实现什么是随机森林BaggingBagging方法如何训练与预测训练预测随机森林算法流程随机森林的训练流程随机森林的预测流程使用python实现随机森林数据介绍代码什么是随机森林Bagging想要知道什么是随机森林,我们需要知道Bagging:Bagging 是 Bootstrap Aggregating 的英文缩写,刚接触的童鞋不要误认为 Bagging 是一种算法, Bagging 和 Boosting 都是集成学习中的学习框架,代表着不同的思想。与 Boost
2020-10-28 12:33:44 2065
原创 走进国产深度学习框架——百度飞桨(paddlepaddle)
走进国产深度学习框架——百度飞桨什么是飞桨飞桨初体验创建数据变量/常量网络搭建数据操作搭建网络与执行器网络运行安装飞桨windows环境下使用pip安装CPU版本windows环境下使用pip安装CUDA10版本检查是否安装成功什么是飞桨飞桨 (PaddlePaddle)以百度多年的深度学习技术研究和业务应用为基础,集深度学习核心框架、基础模型库、端到端开发套件、工具组件和服务平台于一体,2016 年正式开源,是全面开源开放、技术领先、功能完备的产业级深度学习平台。飞桨源于产业实践,始终致力于与产业深入
2020-10-18 13:57:12 8422 1
原创 python爬虫实战——爬点美图给你做壁纸
带你用python做个爬虫什么是爬虫编写爬虫要用的库requests库re库开始做爬虫吧爬虫代码应朋友要求,给他写一篇关于爬虫的博客,翻翻找找,找到了以前写的爬虫里表现得比较好的,拿出来给大家讲讲。什么是爬虫先从百度百科上对爬虫的定义开始吧:网络爬虫是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本这篇博客,我们就做个简单的定向爬虫,先来看看爬虫工作的流程:首先是计算机通过要爬取的网页的url对网页发送请求,网页接收到请求后在没有问题的情况下会接受请求并返回响应,返回的响应会携带网页的h
2020-10-07 15:44:44 390
原创 机器学习——聚类之k近邻算法及python使用
k近邻(k-Nearest Neighbor,简称kNN)学习是一种常用的监督学习方法,其工作机制非常简单:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k个“邻居”的信息来进行预测通常,在分类任务中可使用“投票法”,即选择这k个样本中出现最多的类别标记作为预测结果;在回归任务中可使用“平均法”,即将这k个样本的实值输出标记的平均值作为预测结果;还可基于距离远近进行加权平均或加权投票,距离越近的样本权重越大。
2020-10-06 16:27:24 2106
原创 机器学习——神经网络python实现
机器学习——神经网络神经网络的基本概念神经网络的训练方法数据介绍python代码实现神经网络的基本概念1、神经网络由输入层、隐藏层、输出层组成;2、层与层之间的神经元有连接,而层内之间的神经元没有连接。连接的神经元都有对应的权重;3、最左边的层叫做输入层,这层负责接收输入数据;4、最右边的层叫输出层,我们可以从这层获取神经网络输出数据;5、输入层和输出层之间的层叫做隐藏层。6、表示相邻两层不同神经元连接的强度叫权重。如果神经元1到神经元2有较大的值,则意味着神经元1对神经元2有较大影响。权重减
2020-09-27 20:53:25 1046
原创 机器学习——感知机初步
机器学习——感知机初步机器学习——感知机初步机器学习——感知机初步什么是感知机数据介绍感知机算法流程感知机的python代码实现什么是感知机想要了解什么是感知机,首先了解生物神经元(BN)结构,生物神经元结构如下图所示:从图中可以看出每一个生物神经元主要由细胞体、树突、轴突和突触4个部分构成。有一定生物学基础的人能够明白,一个神经元的输入端有多个树突,主要是用来接受输入信息。输入信息经过突触处理,将输入信息累加,当处理后的输入信息大于某一个特定的阈值,会把信息通过轴突传播出去,这时称神经元被激活,
2020-09-18 21:39:59 736
原创 TensorFlow安装常见问题和解决办法
我在安装TensorFlow遇到的问题和对应的解决办法刚好最近在看一些关于深度学习的书,然后就想着安装tensorflow跑跑代码加深一下印象,然后就遇见了很多问题,想着不能就这么算了就查找csdn的一些大佬们的博客,幸好都有解决方法,经历了几个小时终于是弄好了,下面是我遇到的一些问题和解决方法。问题一安装python库首选用pip,但总会出现下载超时的问题,这里我用了豆瓣镜像来下载,会快很多,命令行运行代码。pip install -i http://pypi.douban.com/simple
2020-07-24 13:28:08 8671 2
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人