jupyter notebook使用tensorflow(cpu)环境配置 【仅作记录】

文章讲述了如何创建并激活conda环境,安装tensorflow以及处理与python3.10不兼容的问题。在安装ipykernel后,遇到内核初始化错误,通过卸载重装numpy解决。此外,还提到了改变conda环境安装路径的方法和可能的权限问题。
部署运行你感兴趣的模型镜像

1.创建环境并进入虚拟环境(若需要改变虚拟环境的安装位置见文尾)

conda create -n tf python=3.10
conda activate tf

2.在相应环境下安装tensorflow

conda install tensorflow
//其他可能会安装的包如下
//conda install matplotlib
//若在jupyter内部切换核心来改变环境,则没有必要conda install jupyter

3.此时进入jupyter notebook会发现并没有tf的kernel,而python3.10与nb_conda不兼容,无法安装nb_conda,运行以下代码解决

conda install -c conda-forge ipykernel
python -m ipykernel install --user --name tf

运行完后,重启jupyter就可以发现其中有可以更换的kernel了

注:此时运行ml代码过程中内核一直挂掉,出现了如下报错错

Initializing libiomp5md.dll, but found libiomp5md.dll already initialized

卸载numpy重新安装即可

pip uninstall numpy
pip install numpy

<改变虚拟环境安装路径>

conda config --add envs_dirs newdir

运行conda info进行查看,当理想路径位于env第一个路径即可,但是在这种情况下环境仍然可能会安装到别的位置,可以先尝试安装一个环境并用conda info -e进行查看,若安装位置错误,则可能是权限不够的原因

找到anaconda文件夹
属性->安全->编辑user权限->给予所有权限即可

您可能感兴趣的与本文相关的镜像

Python3.8

Python3.8

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值