基于BP神经网络的四旋翼无人机ADRC姿态控制

1. BP神经网络ADRC

1. ADRC介绍

ADRC控制器的介绍可参考上篇博客:基于自抗扰ADRC的四旋翼无人机控制-CSDN博客

2. BP神经网络ADRC控制器结构图

ADRC中的ESO负责估计系统状态与扰动,但是由固定参数的ESO组成的控制系统无法实现扰动变化时姿态的精确控制,因此需要不断调节ESO的参数,提升ADRC的鲁棒性。最终3个姿态角的控制器如下图,采用改进BP 神经网络在线整定ESO的参数,估计并补偿系统的内外部扰动。

3. BP神经网络整定ESO

通过 BP 神经网络的学习和训练功能,按照使误差减小最快的方向分别调整隐含层到输

出层的权值、输出层的阈值、输入层到隐含层的权值以及隐含层的阈值,逐步找到某一

最优控制律下的ESO参数的修正量。

3. 仿真模型的搭建

1. 添加的扰动信号

2. 控制系统的两种控制器

    控制器中v为期望信号,y为输出信号,f为人为添加的干扰信号,如下图所示,控制器输出至控制对象,控制对象采用的是线性化纵向传递函数。

    设计的BPNN-ADRC控制器内部如下:

4. 仿真结果

1. 添加扰动的跟踪曲线

曲线局部放大图:

2. BPNN-ESO控制参数变化曲线

参考文献

  • Research on Control of Quadrotor UAV Based on Improved BP Neural Network PID and ADRC

如需代码与讲解可私,获得方式见主页,谢绝白嫖。预告下一篇RBFNN-ADRC

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值