自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 资源 (2)
  • 收藏
  • 关注

原创 Python数字

Numbersintmy_int = 6print('value: {}, type: {}'.format(my_int, type(my_int)))value: 6, type: <class 'int'>floatmy_float = float(my_int)print('value: {}, type: {}'.format(my_float, type(my_float)))value: 6.0, type: <class 'float'>No

2021-03-19 17:33:00 189

原创 循环次数间接依赖问题规模n算法复杂度分析

2020-09-14 10:32:51 389

原创 pip临时改源

pip install Name -i https://pypi.douban.com/simple阿里云 http://mirrors.aliyun.com/pypi/simple/中国科技大学https://pypi.mirrors.ustc.edu.cn/simple/ 豆瓣http://pypi.douban.com/simple/ 清华大学https://pypi.tuna.tsinghua.edu.cn/simple/...

2020-06-15 16:51:15 199

原创 windows7系统如何开热点

1,首先,通过任务栏左下角的搜索功能搜索“CMD”,在搜索结果中找到CMD程序后用鼠标右键,选择“以管理员身份运行”.然后输入其中ssid是无线网络名称、key是无线网络密码,然后按回车键继续netsh wlan set hostednetwork mode=allow ssid=4Gtest key=123456783,无线网络设置完毕后,打开“网络共享中心”进入下一步。4,点击“更改适配器设置”。5,右键点击“无线网络连接”,选择“属性”。7,重新打开“命令提示符”输入net

2020-06-15 16:34:15 680 2

原创 如何在Pycharm里使用Conda虚拟环境

1.打开设置Setting快捷键进入设置Ctrl + Alt +S2.寻找Project | Project Interpreter.3.Click the The Configure project interpreter icon and select AddIn the left-hand pane of the Add Python Interpreter dialog, select Conda Environment. The following actions depend o

2020-06-14 15:01:02 22903 1

转载 简单使用Anaconda prompt

创建python虚拟环境conda create -n your_env_name python=X.X#使用激活(或切换不同python版本)的虚拟环境Linux: source activate your_env_name (虚拟环境名称)Windows: activate your_env_name (虚拟环境名称)对虚拟环境中安装额外的包conda install -n your_env_name [package] 关闭虚拟环境Linux: source de

2020-06-14 14:25:03 935

steepest_descent_algorithm.zip

在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。反过来,如果我们需要求解损失函数的最大值,这时就需要用梯度上升法来迭代了。在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。

2020-06-15

梯度下降算法matlab实现

梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。反过来,如果我们需要求解损失函数的最大值,这时就需要用梯度上升法来迭代了。在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。

2020-06-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除